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Exclusion Process
The exclusion process describes particles hopping on an interval
{1, 2, . . . ,N} and satisfying the exclusion principle: at most one
particle per site
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1 2 3 NN−1. . .

Particles can jump to neighbouring sites if empty and may exit or
enter the interval from the boundary points 1 and N with rates
α, β, γ, δ.
In the large time limit a current is established and the
configuration of particles converges to a stationary measure µ
which is a probability measure on the set of configurations

Ω = {0, 1}N
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Density profile

For large times and large N the density profile n(x) gives the local
density of particles according to their position x ∈ [0, 1].

n(x) ∼ number of particles in [xN, (x + δx)N]

Nδx

It converges to a linear function on [0, 1] (which depends on
α, β, γ, δ).

n(x) = n0 + (n1 − n0)x 0 ≤ t ≤ 1

Without loss of generality one can assume that n0 = 0, n1 = 1.



Large deviations for the density profile

0 1

h(x)

The probability that the density profile is close to some function
h(x) behaves as

e−NIssep(h)

where Issep is the large deviation functional, computed by Derrida,
Lebowitz, and Speer (2001).



Issep(h) is the Legendre transform of Fssep defined by the
extremization problem

Fssep[h] = max
g(·)

F [h; g ]

F [h; g ] :=

∫ 1

0
dx

[
log

(
1 + g(x)e(x)

)
− log(g ′(x))

]
with e(x) = eh(x) − 1 and g(x) solution of the non-linear
differential equation,(

1 + g(x) e(x))
)
g ′′(x) = g ′(x)2 e(x) ,

with boundary conditions g(0) = 0 and g(1) = 1.

This formula is established using the matrix ansatz.



The aim of this talk is to reveal free cumulants hidden behind the
formulas for the large deviation functional.

This is based on joint work with M. Bauer, D. Bernard, L. Hruzsa.

For this we use connections with a quantum version of the SSEP.



Quantum Symmetric Simple Exclusion Process

Fermionic particles on {1, 2, . . . ,N} are subject to a Hamiltonian

Ht =
N−1∑
j=1

c†j+1cjW
j
t + c†j cj+1W̄

j
t

W j
t , j = 1, . . .N − 1 = independent complex Brownian motions

c†i , ci=fermionic creation and annihilation operators, satisfying the
CAR, e.g.

cic
†
j + c†j ci = δij

acting on
V = (C2)⊗N

V is the quantum version of Ω = {0, 1}N .
A state of the form ei1 ⊗ . . .⊗ eiN corresponds to a classical
configuration (e0 =empty, e1=occupied).
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Quantum Symmetric Simple Exclusion Process

The distribution of the quantum particles is determined by a
density matrix ρt a positive hermitian operator on V with
Tr(ρt) = 1.

It satisfies the evolution equation:

dρt = −i [dHt , ρt ]−
1

2
[dHt , [dHt , ρt ]] + Lbdry (ρt)dt

Lbdry is a boundary term describing what happens at the boundary
sites 1,N.
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ρt is a random matrix, if the initial configuration is diagonal on the
classical states the expected value ρ̄t satisfies the same evolution
as the classical SSEP.

In particular, for a fixed time t, the joint distribution of occupation
numbers
τi := 0 if site i is empty, 1 if occupied
can be expressed in terms of the QSSEP.

Essep

[
e
∑

j hjτj
]
= E∞

[
Tr

(
ρ e

∑
i hi n̂i

)]
= Tr

(
ρ̄∞ e

∑
i hi n̂i

)
with n̂i := c†i ci the quantum number operators, ρ̄∞ := E∞[ρ] the
mean Q-SSEP state, averaged w.r.t. the Q-SSEP steady measure
denoted E∞.
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Large deviations for QSSEP and free cumulants

The two-point functions Gij = Tr(ρcic
†
j ) form a random matrix

G = (Gij)1≤i ,j≤N

The random variable Gij encodes the correlations between sites i
and j .

The fluctuations of G are measured by their cumulants

E [Gi1j1Gi2j2 . . .Gip jp ]
c = Kp(Gi1j1 ,Gi2j2 , . . . ,Gip jp)

These are the quantities of interest.
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Asymptotics of the cumulants

As N → ∞ the leading cumulants scale as N−p+1.

E [Gi1j1Gi2j2 . . .Gip jp ]
c = Kp(Gi1j1 ,Gi2j2 , . . . ,Gip jp)

Only the ones for which j1, . . . , jp is a cyclic permutation of
i1, . . . , ip have a nonzero limit.
If i1/N, i2/N, . . . , ip/N → u1, u2, . . . , up ∈ [0, 1] as N → ∞, then

E [Gi1ipGip ip−1 . . .Gi2i1 ]
c =

1

Np−1
gp(u1, . . . , up) + O(

1

Np
)

for some functions gp.

The gp are piecewise polynomial functions, polynomial in each
sector corresponding to an ordering of the ui .
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Loop polynomials (Bernard and Jin, 2021)

Define Qσ(x1, . . . , xp) for 0 ≤ x1 ≤ x2 ≤ . . . ≤ xp ≤ 1, indexed by
circular permutations σ of 1, . . . , p by

E [Gi1iσp−1(1)
Giσp−1(1)iσp−2(1)

. . .Giσ(1)i1 ]
c =

1

Np−1
Qσ(x1, . . . , xp)+O(

1

Np
).

where ik/N → xk as N → ∞

The Qσ are the loop polynomials. They give the values of the
functions gp in each sector.
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The loop polynomials as free cumulants

On [0, 1] ⊂ R with Lebesgue measure let for x ∈ [0, 1]

Πx = 1[0,x]

The Πx for a commutative family of random variables.

ΠxΠy = Πmin(x ,y)

Theorem (B. 2022)

Qσ(x1, . . . , xn) = κn(Πx1 ,Πxσ(1)
,Πxσ2(1)

,Πxσn−1(1)
)

Here the κn are the free cumulants.
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The identification of the large deviation functional for the SSEP
will be based on the computation of the asymptotics of the
Laplace transform of the joint distribution of the occupation
numbers τi , using their relation with the QSSEP.

Essep

[
e
∑

j hjτj
]
= E∞

[
Tr

(
ρ e

∑
i hi n̂i

)]
= Tr

(
ρ̄∞ e

∑
i hi n̂i

)
This relation allows to relate non-coincident cumulants of the
SSEP and the QSSEP.



Define the scaled cumulants of the SSEP as

g ssep
n (x1, . . . , xn) = lim

N→∞
Nn−1K (τi1 , . . . , τin)

where ik/N → xk

For 0 < xk < 1 all different, we have

g ssep
n (x1, · · · , xn) = (−1)n−1

∑
σ∈Sn/Zn

gn(xσ1 , · · · , xσn).

The sum is over all permutations σ modulo cyclic permutations.
There are (n − 1)! terms in the sum.
This relation follows from Wick’s theorem. Together with the link
between the Q-SSEP cumulants and free probability this will give
the new construction of the classical SSEP large deviation function.
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The occupation numbers are Bernoulli variables: they only take
values 0 or 1.
In general the joint distribution of N Bernoulli variables depends
on 2N numbers.
In particular their cumulants depend on 2N numbers, the
non-coincident cumulants.

K (bi1 , bi2 . . . , bik ); i1 < i2 < . . . < ik

We first give a general formula for cumulants of Bernoulli variables
in terms of non-coincident cumulants.



A general formula for cumulants of Bernoulli variables

Let bi be a family of (commuting) Bernoulli variables,

W = log E
[
e
∑N

i=1 hibi
]
=

∑
H

µ(H•)

|AutH|
∑

L∈Lab(H)

w(L), (1)

where the sum is over connected bipartite graphs, L runs over all
labellings of the white vertices of H by distinct indices and

w(L) =
∏
•
K (b•)

∏
edges of H

ei (2)

The graph H• is the induced graph on black vertices, µ the value
of a certain Möbius function associated to this graph and |Aut(H)|
the number of automorphisms of the unlabelled graph.



An example:

1

2

5

6

K2(b2,b6)

K3(b1,b2,b6)

K3(b1,b2,b5)

e6

e2 e2

e2 e1

e1

e5

e6

The graph H• is a complete graph with three vertices so that
µ(H•) = 2 and there are no nontrivial automorphisms moreover
the weight of the labelling is

w(L) = e21e
3
2e5e

2
6K3(b1, b2, b6)K2(b2, b6)K3(b1, b2, b5)



The preceding formula can be obtained using the theory of
cumulants with products as entries (Leonov-Shiryaev formula) as
well as some graph theory involving the chromatic polynomials.



A scaling limit

The previous formula simplifies if one makes the assumption that
the cumulants scale, for N → ∞, as

Kn(bi1 , . . . , bin) ∼ N1−nψ(i1/N, . . . , in/N)

for some continuous function ψ on Σ = [0, 1].
In this case, in the sum only the contribution of graphs G which
are trees survives as N → ∞.



Inroduce the generating function of the ψn as

F0(q) =
∑
n

1

n!

∫
Σn

q(s1)q(s2) . . . q(sn)ψn(s1, . . . , sn)ds1 . . . dsn

In the scaling limit, the free energy is obtained by solving the
following variational problem

lim
N→∞

1

N
W = max

g ,q

[∫
[log(1 + e(s)g(s))− q(s)g(s)]ds + F0(q)

]
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We can apply the preceding analysis to the case of the
SSEP/QSSEP relation and make the connection with the free
cumulants.
For this is it natural to introduce formulas related to the
R-tranform:

Let b(x) := −
∫ 1
x dy a(y) define

F0[a] =

∫ 1

0
dx log(z − b(x))− z + 1, with

∫ 1

0

dy

z − b(y)
= 1



A new formula for the SSEP large deviation functional

Bauer, Bernard, B., Hruza, 2023

Issep[n] = maxg(·),q(·)
( ∫ 1

0dx
[
n(x) log

( n(x)
g(x)

)
+(1− n(x)) log

( 1−n(x)
1−g(x)

)
+ q(x)g(x)

]
− F0[q]

)
One can check that this coincides with the previous formulation of
Derrida, Lebowitz and Speer.



THANK YOU


