Asymptotic expansions in Random Matrix Theory and application: the case of Haar unitary matrices

Félix Parraud

KTH Royal Institute of Technology

April 10, 2023

Based on the following work:

Asymptotic expansion of smooth functions in deterministic and iid Haar unitary matrices, and application to tensor products of matrices

A (1) > A (2) > A

Given a family $X^N = (X_1^N, \ldots, X_d^N)$ of self-adjoint random matrices, P a noncommutative polynomial, how does the operator norm of $P(X^N)$ behaves asymptotically? I.e. can we compute $\lim_{N\to\infty} \|P(X^N)\|$?

Given a family $X^N = (X_1^N, \ldots, X_d^N)$ of self-adjoint random matrices, P a noncommutative polynomial, how does the operator norm of $P(X^N)$ behaves asymptotically? I.e. can we compute $\lim_{N\to\infty} ||P(X^N)||$?

A necessary assumption

There exists a family $x = (x_1, \ldots, x_d)$ of self-adjoint elements of a C^* -algebra A endowed with a faithful trace τ such that almost surely, the family X^N converges in distribution towards x. That is for any noncommutative polynomial Q,

$$\lim_{N\to\infty}\frac{1}{N}\operatorname{Tr}\left(Q(X^N)\right)=\tau(Q(x)).$$

Given a family $X^N = (X_1^N, \ldots, X_d^N)$ of self-adjoint random matrices, P a noncommutative polynomial, how does the operator norm of $P(X^N)$ behaves asymptotically? I.e. can we compute $\lim_{N\to\infty} \|P(X^N)\|$?

A necessary assumption

There exists a family $x = (x_1, \ldots, x_d)$ of self-adjoint elements of a C^* -algebra A endowed with a faithful trace τ such that almost surely, the family X^N converges in distribution towards x. That is for any noncommutative polynomial Q,

$$\lim_{N\to\infty}\frac{1}{N}\operatorname{Tr}\left(Q(X^N)\right)=\tau(Q(x)).$$

Problem

Given a family $X^N = (X_1^N, \ldots, X_d^N)$ of random matrices, P a noncommutative polynomial, can we prove that almost surely:

$$\lim_{N\to\infty} \left\| P(X^N) \right\| = \| P(x) \|?$$

э

We know that for any $k \in \mathbb{N}$,

$$\left\|P\left(X^{N}\right)\right\| \geq \left(\frac{1}{N}\operatorname{Tr}\left(\left(P\left(X^{N}\right)^{*}P\left(X^{N}\right)\right)^{k}\right)\right)^{1/2k}$$

Consequently, thanks to the convergence in distribution,

$$\liminf_{N\to\infty} \left\| P(X^N) \right\| \geq \tau \left((P(x)^* P(x))^k \right)^{1/2k}.$$

And since it is known that $\lim_{k\to\infty} \tau \left((P(x)^* P(x))^k \right)^{1/2k} = \|P(x)\|$,

$$\liminf_{N\to\infty}\left\|P(X^N)\right\|\geq \|P(x)\|\,.$$

Ξ.

< □ > < □ > < □ > < □ > < □ >

One has for any $k \in \mathbb{N}$ that:

$$\left\|P(X^{N})\right\|^{2k} = \left\|\left(P(X^{N})^{*}P(X^{N})\right)^{k}\right\| \leq \operatorname{Tr}\left(\left(P(X^{N})^{*}P(X^{N})\right)^{k}\right).$$

Thus heuristically,

$$\left\| P(X^N) \right\| \le N^{1/2k} \left(\tau \left((P(x)^* P(x))^k \right) \right)^{1/2k} \\ \le N^{1/2k} \left\| P(x) \right\|.$$

Thus one would like to take $k \gg \ln(N)$. However doing so make it way more complicated to control the error term.

Ξ.

< □ > < □ > < □ > < □ > < □ >

Definition

Let $A = (a_1, ..., a_k)$ be a k-tuple of elements of a C^* -algebra. The joint *-distribution of the family A is the linear form

$$\mu_{A}: P \mapsto \tau \big[P(A, A^{*}) \big]$$

on the set of polynomials in 2k noncommutative variables.

Definition

By **convergence in distribution**, for a sequence of families of variables $(A_N)_{N\geq 1} = (a_1^N, \dots, a_k^N)_{N\geq 1}$ in C^* -algebras $(\mathcal{A}_N, ^*, \tau_N, \|.\|)$, we mean the pointwise convergence of the map

$$\mu_{A_N}: P \mapsto \tau_N \big[P(A_N, A_N^*) \big].$$

< ロ > < 同 > < 回 > < 回 >

Definition

We say that U^N is a Haar unitary random matrix of size N if its law is the Haar measure on the group of unitary matrices of size N.

э

Definition

We say that U^N is a Haar unitary random matrix of size N if its law is the Haar measure on the group of unitary matrices of size N.

Theorem (D. Voiculescu, 1991)

Let $U^N = (U_1^N, \ldots, U_d^N)$ be independent Haar unitary matrices, $u = (u_1, \ldots, u_d)$ a d-tuple of free Haar unitaries. Then almost surely U^N converges in distribution towards u. That is almost surely for any noncommutative polynomial P,

$$\lim_{\mathsf{N}\to\infty}\frac{1}{\mathsf{N}}\operatorname{Tr}\left(\mathsf{P}(U^{\mathsf{N}},(U^{\mathsf{N}})^*)\right)=\tau\left(\mathsf{P}(u,u^*)\right)\,.$$

< □ > < □ > < □ > < □ > < □ >

Let $(X_t)_{t\geq 0}$ be a Markov process associated with infinitesimal generator \mathcal{L} , then it is known that:

- For f in the domain of \mathcal{L} , $\frac{d}{dt}\mathbb{E}[f(X_t)] = \mathbb{E}[\mathcal{L}f(X_t)]$.
- If Z is the invariant law of this Markov process, then X_t converges in law towards Z.

A (1) > A (2) > A

Let $(X_t)_{t>0}$ be a Markov process associated with infinitesimal generator \mathcal{L} , then it is known that:

- For f in the domain of \mathcal{L} , $\frac{d}{dt}\mathbb{E}[f(X_t)] = \mathbb{E}[\mathcal{L}f(X_t)]$.
- If Z is the invariant law of this Markov process, then X_t converges in law towards Z.

Thus,

$$\mathbb{E}[f(Z)] - \mathbb{E}[f(X_0)] = \lim_{t \to \infty} \mathbb{E}[f(X_t)] - \mathbb{E}[f(X_0)] = \int_0^\infty \mathbb{E}[\mathcal{L}f(X_t)] \ dt.$$

In particular if $X_0 \sim Z$, then $\mathbb{E}[f(X_t)]$ is constant and thus for any t, $\mathbb{E}[\mathcal{L}f(X_t)] = 0$.

Let $(x_t)_{t\geq 0}$ be a free Markov process associated with infinitesimal generator \mathcal{L} , then it is known that:

- For any polynomial P, $\frac{d}{dt}\tau[P(x_t)] = \tau[\mathcal{L}P(x_t)].$
- If z is the invariant distribution of this free Markov process, then x_t converges in distribution towards z.

Let $(x_t)_{t\geq 0}$ be a free Markov process associated with infinitesimal generator \mathcal{L} , then it is known that:

- For any polynomial P, $\frac{d}{dt}\tau[P(x_t)] = \tau[\mathcal{L}P(x_t)]$.
- If z is the invariant distribution of this free Markov process, then x_t converges in distribution towards z.

Thus,

$$\tau[P(x)] - \tau[P(x_0)] = \lim_{t\to\infty} \tau[P(x_t)] - \tau[P(x_0)] = \int_0^\infty \tau[\mathcal{L}P(x_t)] dt.$$

In particular if $x_0 \sim z$, then $\tau[P(x_t)]$ is constant and thus for any t, $\tau[\mathcal{L}P(x_t)] = 0$.

э

- Let us assume that there exists a free Markov process whose invariant distribution is the one of *u* We set
 - (u^N_t)_{t≥0} such a Markov process started in U^N,
 (u_t)_{t≥0} such a Markov process started in u.

Then after showing that this is well-defined, for any polynomial Q,

$$\tau[Q(u)] - \mathbb{E}\left[\frac{1}{N}\operatorname{Tr}\left[Q(U^N)\right]\right] = \int_0^\infty \mathbb{E}\left[\tau_N\left[\mathcal{L}Q(u_t^N)\right]\right] \ dt.$$

9/15

- Let us assume that there exists a free Markov process whose invariant distribution is the one of *u*. We set
 - $(u_t^N)_{t>0}$ such a Markov process started in U^N ,
 - $(u_t)_{t>0}$ such a Markov process started in u.

Then after showing that this is well-defined, for any polynomial Q,

$$\tau[Q(u)] - \mathbb{E}\left[\frac{1}{N}\operatorname{Tr}\left[Q(U^N)\right]\right] = \int_0^\infty \mathbb{E}\left[\tau_N\left[\mathcal{L}Q(u_t^N)\right]\right] \ dt.$$

• Heuristically since we know that U^N converges in distribution towards u, then

$$\lim_{N\to\infty} \mathbb{E}\left[\tau_N\left[\mathcal{L}Q(u_t^N)\right]\right] = \tau\left[\mathcal{L}Q(u_t)\right] = 0.$$

< ロ > < 同 > < 回 > < 回 >

Theorem (P., 2023)

Let the following objects be given,

- $U^{N} = (U_{1}^{N}, \dots, U_{d}^{N})$ independent Haar unitary matrices in $\mathbb{M}_{N}(\mathbb{C})$,
- P a self-adjoint polynomial,
- $f \in C^{4k+7}(\mathbb{R})$.

Then there exist determinitic constants $(\alpha_i^P(f))_{i \in \mathbb{N}}$ such that,

$$\mathbb{E}\left[\frac{1}{N}\operatorname{Tr}_{N}\left(f(P(U^{N}))\right)\right] = \sum_{0 \leq i \leq k} \frac{1}{N^{2i}} \alpha_{i}^{P}(f) + \mathcal{O}(N^{-2(k+1)}).$$

Besides, if the support of f and the spectrum of P(u) are disjoint, then for any i, $\alpha_i^P(f) = 0$.

< ロ > < 同 > < 回 > < 回 >

We want to show the following formula:

$$\mathbb{E}\left[\frac{1}{N}\operatorname{Tr}_{N}\left(f(P(U^{N}))\right)\right] = \sum_{0 \leq i \leq k} \frac{1}{N^{2i}} \alpha_{i}^{P}(f) + \mathcal{O}(N^{-2(k+1)}).$$

2

< □ > < □ > < □ > < □ > < □ >

We want to show the following formula:

$$\mathbb{E}\left[\frac{1}{N}\operatorname{Tr}_{N}\left(f(P(U^{N}))\right)\right] = \sum_{0 \le i \le k} \frac{1}{N^{2i}} \alpha_{i}^{P}(f) + \mathcal{O}(N^{-2(k+1)}).$$

• We set v_s a family of free unitary Browian motions started in 1,

$$\mathbb{E}\left[\tau_N\Big(Q(U^N, \mathsf{v}_s)\Big)\right] = \tau\Big(Q(u, \mathsf{v}_s)\Big) - \int_0^\infty \mathbb{E}\left[\tau_N\Big(\mathcal{L}Q(u_t^N, \mathsf{v}_s)\Big)\right] dt$$

2

イロト イロト イヨト イヨト

We want to show the following formula:

$$\mathbb{E}\left[\frac{1}{N}\operatorname{Tr}_{N}\left(f(P(U^{N}))\right)\right] = \sum_{0 \leq i \leq k} \frac{1}{N^{2i}} \alpha_{i}^{P}(f) + \mathcal{O}(N^{-2(k+1)}).$$

• We set v_s a family of free unitary Browian motions started in 1,

$$\mathbb{E}\left[\tau_N\left(Q(U^N, \mathsf{v}_s)\right)\right] = \tau\left(Q(u, \mathsf{v}_s)\right) - \int_0^\infty \mathbb{E}\left[\tau_N\left(\mathcal{L}Q(u_t^N, \mathsf{v}_s)\right)\right] dt.$$

• Then we show that there is a deterministic operator $T_{t,s}$ on the space of polynomials such that

$$\mathbb{E}\left[\tau_N\left(\mathcal{L}Q(u_t^N, v_s)\right)\right] = \frac{1}{N^2} \mathbb{E}\left[\tau_N\left(T_{t,s}(Q)(u_t^N, v_s)\right)\right].$$

• We can view the polynomial $T_{t,s}(Q)$ as a polynomial in (U^N, u_t, v_s) and reiterate the process.

イロン イロン イヨン イヨン

= 990

Corollary

We define,

- $U^N = (U_1^N, \dots, U_d^N)$ independent Haar unitary matrices of size N,
- $u = (u_1, \ldots, u_d)$ free Haar unitaries,
- $P = \sum_{i} Q_{i}(U, U^{*}) \otimes Y_{i}^{M}$ with Q_{i} a non-commutative polynomial with $Y_{i}^{M} \in \mathbb{M}_{M}(\mathbb{C})$.

If we assume that the family Y^M are uniformly bounded over M for the operator norm, then for any $\delta > 0$,

$$\mathbb{P}\left(\left\|P\left(U^{N}\right)\right\| \geq \|P\left(u\right)\| + \delta + \mathcal{O}\left(\left(\frac{M}{N}\right)^{1/2}\ln(NM)^{5/4}\right)\right) \leq e^{-\delta^{2}N}$$

Thus, if $M \ll N/\ln^{5/2}(N)$ and that a family Z^M converges strongly in distribution towards a family of non-commutative variable z, then the family $(U^N, \otimes I_M, I_N \otimes Z^M)$ also converges strongly towards $(u \otimes 1, 1 \otimes z)$.

< ロ > < 同 > < 回 > < 回 >

• Given $n \in \mathbb{N}$, $Q = P^*P$ a self-adjoint polynomial, one has proved that for some operator Δ ,

$$\mathbb{E}\left[\mathsf{Tr}\left(Q^{n}\left(U^{N}\right)\right)\right] = \mathsf{NM}\ \tau(\mathsf{P}(u)) + \frac{1}{N^{2}}\mathbb{E}\left[\mathsf{Tr}\left((\Delta Q^{n})\left(U^{N}\right)\right)\right].$$

・ 同 ト ・ ヨ ト ・

• Given $n \in \mathbb{N}$, $Q = P^*P$ a self-adjoint polynomial, one has proved that for some operator Δ ,

$$\mathbb{E}\left[\mathsf{Tr}\left(Q^{n}\left(U^{N}\right)\right)\right] = NM \ \tau(P(u)) + \frac{1}{N^{2}}\mathbb{E}\left[\mathsf{Tr}\left((\Delta Q^{n})\left(U^{N}\right)\right)\right].$$

One can write

$$\Delta Q^{n}(U^{N}) = \sum_{i+j+k+l=n-4} \alpha \left(Q^{i} \left(U^{N} \right), Q^{j} \left(U^{N} \right), Q^{k} \left(U^{N} \right), Q^{l} \left(U^{N} \right) \right),$$

where

$$\alpha(A_1\otimes B_1, A_2\otimes B_2, A_3\otimes B_3, A_4\otimes B_4) = A_2A_1A_4A_3\otimes B_1B_2B_3B_4.$$

A (1) > A (2) > A

• Given $n \in \mathbb{N}$, $Q = P^*P$ a self-adjoint polynomial, one has proved that for some operator Δ ,

$$\mathbb{E}\left[\mathsf{Tr}\left(Q^{n}\left(U^{N}\right)\right)\right] = NM \ \tau(P(u)) + \frac{1}{N^{2}}\mathbb{E}\left[\mathsf{Tr}\left((\Delta Q^{n})\left(U^{N}\right)\right)\right].$$

One can write

$$\Delta Q^{n}(U^{N}) = \sum_{i+j+k+l=n-4} \alpha \left(Q^{i} \left(U^{N} \right), Q^{j} \left(U^{N} \right), Q^{k} \left(U^{N} \right), Q^{l} \left(U^{N} \right) \right),$$

where

$$\alpha(A_1 \otimes B_1, A_2 \otimes B_2, A_3 \otimes B_3, A_4 \otimes B_4) = A_2A_1A_4A_3 \otimes B_1B_2B_3B_4.$$

• However

$$\operatorname{Tr}(B_1B_2B_3B_4) = M^2\mathbb{E}\left[\operatorname{Tr}(B_2VB_1WB_4V^*B_3W^*)\right].$$

• Given $n \in \mathbb{N}$, $Q = P^*P$ a self-adjoint polynomial, one has proved that for some operator Δ ,

$$\mathbb{E}\left[\mathsf{Tr}\left(Q^{n}\left(U^{N}\right)\right)\right] = \mathsf{NM}\ \tau(\mathsf{P}(u)) + \frac{1}{\mathsf{N}^{2}}\mathbb{E}\left[\mathsf{Tr}\left((\Delta Q^{n})\left(U^{N}\right)\right)\right].$$

One can write

$$\Delta Q^{n}(U^{N}) = \sum_{i+j+k+l=n-4} \alpha \left(Q^{i} \left(U^{N} \right), Q^{j} \left(U^{N} \right), Q^{k} \left(U^{N} \right), Q^{l} \left(U^{N} \right) \right),$$

where

$$\alpha(A_1\otimes B_1,A_2\otimes B_2,A_3\otimes B_3,A_4\otimes B_4)=A_2A_1A_4A_3\otimes B_1B_2B_3B_4.$$

However

$$\operatorname{Tr}(B_1B_2B_3B_4) = M^2\mathbb{E}\left[\operatorname{Tr}(B_2VB_1WB_4V^*B_3W^*)\right].$$

• Thus

$$\mathbb{E}\left[\mathsf{Tr}\left(Q^{n}\left(U^{N}\right)\right)\right] \leq NM \left\|P(u)\right\|^{n} + \frac{Cn^{4}M^{2}}{N^{2}}\mathbb{E}\left[\mathsf{Tr}\left(Q^{n-4}\left(U^{N}\right)\right)\right]$$
$$\leq NM \left\|P(u)\right\|^{n} \times \frac{1}{1 - \frac{C'n^{4}M^{2}}{N^{2}}}.$$

・ 同 ト ・ ヨ ト ・

• Given $n \in \mathbb{N}$, $Q = P^*P$ a self-adjoint polynomial, one has proved that for some operator Δ ,

$$\mathbb{E}\left[\mathsf{Tr}\left(Q^{n}\left(U^{N}\right)\right)\right] = \mathsf{NM}\ \tau(\mathsf{P}(u)) + \frac{1}{\mathsf{N}^{2}}\mathbb{E}\left[\mathsf{Tr}\left((\Delta Q^{n})\left(U^{N}\right)\right)\right].$$

One can write

$$\Delta Q^{n}(U^{N}) = \sum_{i+j+k+l=n-4} \alpha \left(Q^{i} \left(U^{N} \right), Q^{j} \left(U^{N} \right), Q^{k} \left(U^{N} \right), Q^{l} \left(U^{N} \right) \right),$$

where

$$\alpha(A_1 \otimes B_1, A_2 \otimes B_2, A_3 \otimes B_3, A_4 \otimes B_4) = A_2 A_1 A_4 A_3 \otimes B_1 B_2 B_3 B_4.$$

• However

$$\operatorname{Tr}(B_1B_2B_3B_4) = M^2\mathbb{E}\left[\operatorname{Tr}(B_2VB_1WB_4V^*B_3W^*)\right].$$

• Thus

$$\mathbb{E}\left[\mathsf{Tr}\left(Q^{n}\left(U^{N}\right)\right)\right] \leq NM \left\|P(u)\right\|^{n} + \frac{Cn^{4}M^{2}}{N^{2}}\mathbb{E}\left[\mathsf{Tr}\left(Q^{n-4}\left(U^{N}\right)\right)\right]$$
$$\leq NM \left\|P(u)\right\|^{n} \times \frac{1}{1 - \frac{C'n^{4}M^{2}}{N^{2}}}.$$

Finally

$$\mathbb{E}\left[\left\|Q\left(U^{N}\right)\right\|\right] \leq \mathbb{E}\left[\mathsf{Tr}\left(Q^{n}\left(U^{N}\right)\right)\right]^{1/n} \leq \|P(u)\|\left(1+o(1)\right).$$

How do you compute the following quantity:

$$X = \int_{\mathbb{U}_N} U_{i_1,j_1} \dots U_{i_d,j_d} \overline{U}_{i'_1,j'_1} \dots \overline{U}_{i'_d,j'_d} dU,$$

where the integral is with respect to the Haar measure.

ヘロト ヘヨト ヘヨト ヘ

How do you compute the following quantity:

$$X = \int_{\mathbb{U}_N} U_{i_1,j_1} \dots U_{i_d,j_d} \overline{U}_{i'_1,j'_1} \dots \overline{U}_{i'_d,j'_d} dU,$$

where the integral is with respect to the Haar measure.

Given a Haar unitary matrix U of size N, one has

$$X = \mathbb{E}\left[\mathsf{Tr}_{N}\left(UE_{j_{1},i_{2}}U\dots E_{j_{d-1},i_{d}}UE_{j_{d}i_{1}'}U^{*}E_{j_{1}',i_{2}'}\dots U^{*}E_{j_{d}',i_{1}}\right)\right].$$

Thus one wants to compute

$$N\mathbb{E}\left[\frac{1}{N}\operatorname{Tr}\left(P(U, U^*, Z^N)\right)\right],$$

with $Z^N = (E_{i,j})_{i,j \in [1,N]}$.

However with $\tau_N = N^{-1}$ Tr, in the process of proving the asymptotic expansion, we have proved that there exist an operator Δ such that

$$\mathbb{E}\left[\tau_{N}\left(P\left(U^{N}, Z^{N}\right)\right)\right] = \tau(P(u, Z^{N})) + \frac{1}{N^{2}}\mathbb{E}\left[\tau_{N}\left(\left(\Delta P\right)\left(U^{N}, Z^{N}\right)\right)\right],$$

that is,

$$\mathbb{E}\left[\tau_{N}\left(\left(\mathsf{id}-\frac{1}{N^{2}}\Delta\right)\left(P\right)\left(U^{N},Z^{N}\right)\right)\right]=\tau\left(P\left(u,Z^{N}\right)\right).$$

Consequently,

$$\mathbb{E}\left[\tau_{N}\left(P\left(U^{N}, Z^{N}\right)\right)\right] = \tau\left(\left(\operatorname{id}-\frac{1}{N^{2}}\Delta\right)^{-1}(P)\left(u, Z^{N}\right)\right).$$

・ロト ・日 ・ ・ ヨト ・