On second order cumulants

Octavio Arizmendi

joint work with James Mingo

Probabilistic Operator Algebras Seminar,
Berkeley, June 2020
Review: First order R-diagonal and even elements.
Definition

A non commutative probability space is a pair \((\mathcal{A}, \tau)\), where \(\mathcal{A}\) is an algebra with unity \(1_{\mathcal{A}}\) and \(\tau\) is a positive linear functional such that \(\tau(1_{\mathcal{A}}) = 1\).

We assume in this talk that \(\mathcal{A}\) is a \(C^*\)-algebra and \(\tau\) is tracial.

Definition (Voiculescu)

Let \((\mathcal{A}, \tau)\) be a NCPS and let \(\mathcal{A}_1, \mathcal{B}_2\) be subalgebras of \(\mathcal{A}\). We say that \(\mathcal{A}_1\) is free from \(\mathcal{B}_2\) if for all \(a_1 \in \mathcal{A}_1, b_i \in \mathcal{B}_2\) such that \(\tau(a_1) = 0 = \tau(b_i) = 0\) then \(\tau(a_1 b_1 a_2 b_2 \cdots a_n b_n) = 0\).
(First order) Non Commutative Probability

Definition

A non commutative probability space is a pair \((\mathcal{A}, \tau)\), where \(\mathcal{A}\) is an algebra with unity \(1_{\mathcal{A}}\) and \(\tau\) is a positive linear functional such that \(\tau(1_{\mathcal{A}}) = 1\).

We assume in this talk that \(\mathcal{A}\) is a \(C^*\)-algebra and \(\tau\) is tracial.

Definition (Voiculescu)

Let \((\mathcal{A}, \tau)\) be a NCPS and let \(A_1, B_2\) be subalgebras of \(A\). We say that \(A_1\) is free from \(B_2\) if for all \(a_i \in A_1\) \(b_i \in B_2\) such that \(\tau(a_1) = 0 = \tau(b_i) = 0\) then

\[\tau(a_1 b_1 a_2 b_2 \cdots a_n b_n) = 0.\]
Definition (Convergence in joint distribution)

Let \((A_n, \tau_n)\) and \((A, \tau)\) be NCPS and let \(a_n, b_n \in A_n\). We say that the pair \((a_n, b_n)\) converges in joint distribution to \((a, b)\)

\[
\tau_n(a_1^{l_1} b_1^{m_1} \cdots a_k^{l_k} b_k^{m_k}) \to \tau(a_1^{l_1} b_1^{m_1} \cdots a_k^{l_k} b_k^{m_k}).
\]
Definition (Convergence in joint distribution)

Let \((A_n, \tau_n)_{n>0}\) and \((A, \tau)\) be NCPS and let \(a_n, b_n \in A_n\). We say that the pair \((a_n, b_n)\) converges in joint distribution to \((a, b)\)

\[
\tau_n(a_{n1}^{l1} b_{n1}^{m1} \cdots a_{nk}^{lk} b_{nk}^{mk}) \rightarrow \tau(a^{l1} b^{m1} \cdots a^{lk} b^{mk}).
\]

Two sequences of random variables \(\{a_n\}_n\) and \(\{b_n\}_n\) are said to be asymptotically free if they converge to a pair \(a, b\) of free random variables in some NCPS.
Theorem

Let \(\{ G_1^{(n)} \}_{n>0} \) and \(\{ G_2^{(n)} \}_{n>0} \) be two independent sequence of \(n \times n \) hermitian Gaussian matrices, then \(\{ G_1^{(n)} \}_{n>0} \) and \(\{ G_2^{(n)} \}_{n>0} \) are asymptotically free, as \(n \to \infty \).

Let \(\{ A_n \}_{n>0} \) and \(\{ B_n \}_{n>0} \) be two sequences of deterministic random matrices with limiting distributions and let \(U_n \) be a Haar distributed unitary matrix. Then \(\{ U_n A U_n^* \}_{n>0} \) and \(\{ B_n \}_{n>0} \) are asymptotically free.
Let $G_a : \mathbb{C}^+ \to \mathbb{C}^-$ be the Cauchy transform of $\mu \in \mathcal{M}$

$$G_a(z) = \tau \left(\frac{1}{z - a} \right).$$

The R-transform is given by $R_\mu(z) = G_\mu^{<-1>}(z) - 1/z$,

The free cumulants are the coefficients $\kappa_n = \kappa_n(a)$ in the series

$$R_a(z) = \sum_{n=1}^{\infty} k_{n+1} z^n.$$

They may be defined by the moment-cumulant formula

$$\tau(a^n) = \sum_{\sigma \in NC(n)} k_\sigma$$
Multivariate cumulants: multilinear functional $\kappa_n : \mathcal{A}^n \to \mathbb{C}$ defined by

$$\tau(a_1 \cdots a_n) = \sum_{\sigma \in \mathcal{NC}(n)} \kappa_\sigma(a_1, \ldots, a_n)$$

$$\kappa_3(a_1, a_6, a_7) \quad \kappa_3(a_8, a_{11}, a_{12})$$

$$\kappa_1(a_9) \kappa_1(a_{10}) \quad \kappa_4(a_1, a_3, a_4, a_5)$$
Theorem (Speicher)

The following are equivalent

1. A and B are free.
2. For $a_i \in A$ and $b_j \in B$ mixed cumulants vanish:

$$k_n(\ldots, a_i, \ldots, b_k, \ldots) = 0 \quad (1)$$
Theorem (Krackwick & Speicher 00)

Let n_1, \ldots, n_r be positive integers and $n = n_1 + \cdots + n_r$. Let $a_1 \ldots, a_n \in (\mathcal{A}, \tau)$. Then

$$
\kappa_r(a_1 \cdots a_{n_1}, \ldots, a_{n_1+\cdots+n_{r-1}+1} \cdots a_{n_1+\cdots+n_r}) = \sum_{\pi \in NC(n)} \kappa_\pi(a_1, \ldots, a_n)
$$

where the sum is over all π’s such that $\pi \vee \tau_{\bar{n}} = 1_n$ and $\tau_{\bar{n}}$ is the partition $\{\{1, \ldots, n_1\}, \ldots, \{n_1 + \cdots + n_{r-1} + 1, \ldots, n_1 + \cdots + n_r\}\}$.
Example: \(\{a_1, a_3\}\) free from \(\{a_2, a_4\}\)

\[
\kappa_2(a_1a_2, a_3a_4) = \kappa_4(a_1, a_2, a_3, a_4) + \kappa_1(a_1)\kappa_3(a_2, a_3, a_4) \\
+ \kappa_3(a_1, a_3, a_4)\kappa_1(a_2) + \kappa_3(a_1, a_2, a_4)\kappa_1(a_3) + \kappa_3(a_1, a_2, a_3)\kappa_1(a_4) \\
+ \kappa_2(a_1, a_4)\kappa_2(a_2, a_3) + \kappa_2(a_1, a_4)\kappa_1(a_2)\kappa_1(a_3) \\
+ \kappa_1(a_1)\kappa_2(a_2, a_3)\kappa_1(a_4) + \kappa_2(a_1, a_3)\kappa_1(a_2)\kappa_1(a_4) \\
+ \kappa_1(a_1)\kappa_2(a_2, a_4)\kappa_1(a_3).
\]
Example: \(\{a_1, a_3\} \) free from \(\{a_2, a_4\} \)

\[
\kappa_2(a_1a_2, a_3a_4) = \kappa_4(a_1, a_2, a_3, a_4) + \kappa_1(a_1)\kappa_3(a_2, a_3, a_4) \\
+ \kappa_3(a_1, a_3, a_4)\kappa_1(a_2) + \kappa_3(a_1, a_2, a_4)\kappa_1(a_3) + \kappa_3(a_1, a_2, a_3)\kappa_1(a_4) \\
+ \kappa_2(a_1, a_4)\kappa_2(a_2, a_3) + \kappa_2(a_1, a_4)\kappa_1(a_2)\kappa_1(a_3) \\
+ \kappa_1(a_1)\kappa_2(a_2, a_3)\kappa_1(a_4) + \kappa_2(a_1, a_3)\kappa_1(a_2)\kappa_1(a_4) \\
+ \kappa_1(a_1)\kappa_2(a_2, a_4)\kappa_1(a_3).
\]
Example: \(\{a_1, a_3\} \) free from \(\{a_2, a_4\} \)

\[
\kappa_2(a_1a_2, a_3a_4) = \kappa_2(a_1, a_4)\kappa_1(a_2)\kappa_1(a_3) \\
+ \kappa_1(a_1)\kappa_2(a_2, a_4)\kappa_1(a_3).
\]

\[a_1\]
\[a_2\]
\[a_3\]
\[a_4\]
Theorem

Let $a, b \in \mathcal{A}$ be free random variables. Then

$$\tau(ab^n) = \sum_{\pi \in NC(n)} \kappa_\pi(a, \ldots, a) \tau_{Kr}(\pi)(b, \ldots, b)$$ \hspace{1cm} (2)

$$\kappa_{ab}^n = \sum_{\pi \in NC(n)} \kappa_\pi(a, \ldots, a) \kappa_{Kr}(\pi)(b, \ldots, b)$$ \hspace{1cm} (3)
R-diagonal and even elements

Definition

Let $a \in A$. We say that a is *R-diagonal* if for every n and every $\epsilon_1, \ldots, \epsilon_n \in \{-1, 1\}$ we have that

$$\kappa_n(a^{(\epsilon_1)}, a^{(\epsilon_2)}, \ldots, a^{(\epsilon_n)}) = 0$$

whenever there is $1 \leq i < n$ with $\epsilon_i = \epsilon_{i+1}$. i.e., *-cumulants are zero except possibly $\kappa_{2l}(a, a^*, \ldots, a, a^*)$ and $\kappa_{2l}(a^*, a, \ldots, a^*, a)$.

Definition

Let $a \in A$ we say that a self-adjoint element a is *even* if all its odd free cumulants vanish, i.e. $\kappa_{2l+1}(a, \ldots, a) = 0$ for $l \geq 0$.

Examples to have in mind. 1) Circular and Semicircular operators. 2) Haar unitary and Bernoulli
Theorem (Nica & Speicher 97)

Let $x = x^* \in (\mathcal{A}, \tau)$ be even. Then the free cumulants of x^2 can be calculated from the free cumulants of x as follows.

$$\kappa_n(x^2, \ldots, x^2) = \sum_{\pi \in NC(n)} \alpha_\pi$$

where $\alpha_n(x) = k_{2n}(x, \ldots, x)$.

Theorem (Nica & Speicher 97)

Let $a \in \mathcal{A}$ an R-diagonal operator. Then

$$\kappa_n(a^* a, \ldots, a^* a) = \sum_{\pi \in NC(n)} \beta_\pi(a).$$

$\beta_n(a) = k_{2n}(a^*, a, a^*, \ldots, a^*, a)$.

Octavio Arizmendi On second order cumulants
R-diagonal and even elements

Idea of the proof: Use formula for products and arguments.
R-diagonal and even elements

Idea of the proof: Use formula for products and arguments.
Idea of the proof: Use formula for products and arguments.
R-diagonal and even elements

Idea of the proof: Use formula for products and arguments.
R-diagonal and even elements

Idea of the proof: Use formula for products and arguments.
R-diagonal and even elements

Idea of the proof: Use formula for products and arguments.
R-diagonal and even elements

Idea of the proof: Use formula for products and arguments.
R-diagonal and even elements

Idea of the proof: Use formula for products and arguments.
R-diagonal and even elements

Idea of the proof: Use formula for products and arguments.

\[\hat{\pi} \in NC(n) \]
Idea of the proof: Use formula for products and arguments.

\[\pi \in NC^2(2n) \]
Theorem

Let u and b be operators be such that u is a Haar unitary and such that u and b are $*$-free then ub is a R-diagonal.

Theorem

Let a be second order R-diagonal and consider the off-diagonal matrix,

$$A := \begin{pmatrix} 0 & a \\ a^* & 0 \end{pmatrix}$$

as an element in $(M_2(\mathcal{A}), tr_2 \otimes \tau)$. Then

1. A is even element with the same determining sequence as a: $\alpha_n^{(A)} = \beta_n^{(a)}$ for all n.
2. If a is a selfadjoint even element and u is a Haar unitary which is $*$-free from a, then ua is a tracial R-diagonal element with the same determining sequence as a.
Fluctuation Moments and Second Order Cumulants.
Let \((A_N)_{N \in \mathbb{N}}\) be an ensemble of random matrices and suppose that \(A_N\) has a limiting distribution \(\mu_A\) in the sense that for all integers \(p\)

\[
\alpha_p := \lim_{N} \frac{1}{N} E(\text{Tr}(A_N^p))
\]

exists and \(\alpha_p = \int x^p d\mu(x)\).

We are further interested in \(\text{Cov}(\text{Tr}(A_N^p), \text{Tr}(A_N^q))\).

Thus, if \(Y_{N,p} = \text{Tr}(A_N^p - \alpha_p I_N)\), if the limit

\[
\alpha_{p,q} := \lim_{N} E(Y_{N,p} Y_{N,q})
\]

exists, and for all \(r > 2\) and \(p_1, p_2, \ldots, p_r\)

\[
\lim_{N} c_r(\text{Tr}(A_N^{p_1}), \ldots, \text{Tr}(A_N^{p_r})) = 0,
\]

\((\alpha_{p,q})_{p,q}=\text{fluctuation moments}\) of the limiting distribution.
We want then to describe $\tau_2(\cdot, \cdot) = \lim \text{Cov}(\cdot, \cdot)$
The framework that we use is a second order probability space.

Definition

A *second order probability space* is a triplet $(\mathcal{A}, \tau, \tau_2)$ such that

- \mathcal{A} is a unital algebra over \mathbb{C} and $\tau : \mathcal{A} \to \mathbb{C}$ is a tracial linear functional with $\tau(1) = 1$.

- We assume that $\tau_2 : \mathcal{A} \times \mathcal{A} \to \mathbb{C}$ is a bilinear, symmetric, tracial in each variable, and is such that $\tau_2(1, a) = \tau_2(a, 1) = 0$ for all $a \in \mathcal{A}$.

Octavio Arizmendi

On second order cumulants
Second order cumulants

\[\tau_2(a_1 \cdots a_m, a_{m+1} \cdots a_{m+n}) = \sum_{\pi \in S_{NC}(m,n)} \kappa_{\pi}(a_1, \ldots, a_{m+n}) + \sum_{(U, \pi) \in P S_{NC}(m,n)'} \kappa(U, \pi)(a_1, \ldots, a_{m+n}). \]
Second order cumulants

\[\tau_2(a_1 \cdots a_m, a_{m+1} \cdots a_{m+n}) = \sum_{\pi \in S_{NC}(m,n)} \kappa_{\pi}(a_1, \ldots, a_{m+n}) + \sum_{(U, \pi) \in P S_{NC}(m,n)'} \kappa(U, \pi)(a_1, \ldots, a_{m+n}). \]

Left: at least 1 through block. Right: No through block.
Second order cumulants

\[\tau_2(a_1 \cdots a_m, a_{m+1} \cdots a_{m+n}) = \sum_{\pi \in S_{NC}(m,n)} \kappa_{\pi}(a_1, \ldots, a_{m+n}) + \sum_{(U,\pi) \in PS_{NC}(m,n)'} \kappa(U,\pi)(a_1, \cdots, a_{m+n}). \]

\[\alpha_{1,1} = \kappa_{1,1} + \kappa_2 \]
\[\alpha_{2,1} = \kappa_{1,2} + 2\kappa_1 \kappa_{1,1} + 2\kappa_3 + 2\kappa_1 \kappa_2 \]
\[\alpha_{2,2} = \kappa_{2,2} + 4\kappa_1 \kappa_{2,1} + 4\kappa_1^2 \kappa_{1,1} + 4\kappa_4 + 8\kappa_1 \kappa_3 + 2\kappa_2^2 + 4\kappa_1^2 \kappa_2 \]
\[\alpha_{1,3} = \kappa_{1,3} + 3\kappa_1 \kappa_{2,1} + 3\kappa_2 \kappa_{1,1} + 3\kappa_1^2 \kappa_{1,1} + 3\kappa_4 + 6\kappa_1 \kappa_3 + 3\kappa_2^2 + 3\kappa_1^2 \kappa_2 \]
\[\alpha_{2,3} = \kappa_{2,3} + 2\kappa_1 \kappa_{1,3} + 3\kappa_1 \kappa_{2,2} + 3\kappa_2 \kappa_{1,2} + 9\kappa_1^2 \kappa_{1,2} + 6\kappa_1 \kappa_2 \kappa_{1,1} + 6\kappa_1^3 \kappa_{1,1} \]
\[+ 6\kappa_5 + 18\kappa_1 \kappa_4 + 12\kappa_2 \kappa_3 + 18\kappa_1^2 \kappa_3 + 12\kappa_1 \kappa_2^2 + 6\kappa_1^3 \kappa_2 \]
Second order cumulants series

First and second order cumulant series:

\[R(z) = \frac{1}{z} \sum_{n \geq 1} \kappa_n^a z^n, \quad R(z, w) = \frac{1}{zw} \sum_{p, q \geq 1} \kappa_{p,q}^a z^p w^q \]

where \(\kappa_n^a = \kappa_n(a, \ldots, a) \) and \(\kappa_{p,q}^a = \kappa_{p,q}(a, \ldots, a) \).

Moment series,

\[G(z) = \frac{1}{z} \sum_{n \geq 0} \tau(a^n) z^{-n}, \quad G(z, w) = \frac{1}{zw} \sum_{n, m \geq 1} \tau(a^n, a^m) z^{-n} w^{-m}. \]

Then we have the relations

\[\frac{1}{G(z)} + R(G(z)) = z \]

and

\[G(z, w) = G'(z) G'(w) R(G(z), G(w)) + \frac{\partial^2}{\partial z \partial w} \log \left(\frac{G(z) - G(w)}{z - w} \right). \]
Second order freeness

Definition

The random variables \(a_1, \ldots, a_n \) are second order free if

- They are free.
- The second order \textit{mixed} cumulants vanish.
The random variables a_1, \ldots, a_n are second order free if

- They are free.
- The second order mixed cumulants vanish.

Matrices are asymptotically second order free if the first and second order mixed cumulants vanish in the limit.

Examples. Complex Gaussian matrices, and Wishart, (UAU^*, B) with A and B deterministic.

Non examples: General Wigner matrices.
Theorem (Mingo Speicher Tan 08)

Suppose \(n_1, \ldots, n_r, n_{r+1}, \ldots, n_{r+s} \) are positive integers, \(p = n_1 + \cdots + n_r, q = n_{r+1} + \cdots + n_{r+s} \), and

\[
N = \{ n_1, n_1 + n_2, \ldots, n_1 + \cdots + n_{r+s} \}
\]

Given a second probability space \((A, \tau, \tau_2)\) and

\[
a_1, \ldots, a_{n_1}, a_{n_1+1}, \ldots, a_{n_1+n_2}, \ldots, a_n + \cdots + n_{r+s} \in A
\]

let \(A_1 = a_1 \cdots a_{n_1}, A_2 = a_{n_1+1} \cdots a_{n_1+n_2}, \ldots, A_{r+s} = a_{n_1+\cdots+n_{r+s-1}+1} \cdots a_{n_1+\cdots+n_{r+s}} \). Then

\[
\kappa_{r,s}(A_1, \ldots, A_r, A_{r+1}, \ldots, A_{r+s}) = \sum_{(V, \pi)} \kappa(V, \pi)(a_1, \ldots, a_{p+q}), \quad (4)
\]

where the summation is over those \((V, \pi) \in \mathcal{PS}_{NC}(p, q)\) such that \(\pi^{-1}\gamma_{p,q}\) separates the points of \(N\).
Formula for products as arguments

Separating the points
Second Order diagonal and Even elements
R-diagonal elements

Definition

Let \((A, \tau, \tau_2)\) be a second order non-commutative probability space. An element \(a \in (A, \tau, \tau_2)\) is called **second order R-diagonal** if it is \(R\)-diagonal and the only non-vanishing second order cumulants are of the form

\[
\kappa_{2p,2q}(a, a^*, \ldots, a, a^*) = \kappa_{2p,2q}(a^*, a, \ldots, a^*, a).
\]

Examples:

- Second order Haar Unitary: Limiting distribution of Haar distributed on \(U(n)\). (not obvious)
- Circular operator \(c\): Limiting distribution of \(G_1 + iG_2\), GUE matrices.
Definition

Let \((A, \tau, \tau_2)\) be a second order non-commutative probability space. An element \(x \in (A, \tau, \tau_2)\) is called **second order even** (or even for short) if \(x = x^*\) and \(x\) is such that odd moments vanish, i.e. \(\tau_2(x^p, x^q) = 0\) unless \(p\) and \(q\) are even and \(\tau(x^{2n+1}) = 0\) for all \(n \geq 0\).

Example:

- Semicircular operator \(c\): Limiting distribution of \(G\) a GUE matrices.
Theorem

Let \(a \) be second order \(R \)-diagonal in \((A, \tau, \tau_2)\) and consider the off-diagonal matrix,

\[
A := \begin{pmatrix}
0 & a \\
\ast a & 0
\end{pmatrix}
\]
as an element in \((M_2(A), tr_2 \otimes \tau, \tilde{\tau}_2)\). Then

1. \(A \) is second order even element.

2. \(A \) has the same determining sequence as \(a \): \(\beta^{(A)}_{p,q} = \beta^{(a)}_{p,q} \) for all \(p, q \geq 1 \) and \(\beta^{(A)}_n = \beta^{(a)}_n \) for all \(n \).

3. The second order cumulants of \(a \) and the second order cumulants of \(A \), are related by

\[
\kappa^{(a)}_{p,q} = \kappa^{(A)}_{p,q} + \sum_{\pi \in S_{NC}^{all,+}(m,n)} \kappa^{(A)}_{\pi}.
\]
Theorem

Let \(\{a, a^*\} \) and \(\{b, b^*\} \) be second order free and suppose that \(a \) is second order \(R \)-diagonal. Then \(ab \) is second order \(R \)-diagonal.

Examples:

- \(c_1 c_2 \cdots c_n, c_i \) second order Circular Operator.
- \(ua, u \) second order Haar, a limit of \(A_n \) deterministic.
Definition

Let \((A, \tau, \tau_2)\) be a second order non-commutative probability space. Let \(a\) be second order \(R\)-diagonal. Define
\[\beta_n^{(a)} := \kappa_{2n}(a, a^*, \ldots, a, a^*) \]
and
\[\beta_{p,q}^{(a)} := \kappa_{2p,2q}(a, a^*, \ldots, a, a^*). \] (5)

Theorem

Let \(a\) be a second order \(R\)-diagonal with determining sequences
\((\beta_n^{(a)})_{n \geq 1}\) and \((\beta_{p,q}^{(a)})_{p,q \geq 1}\) then we have
\[\kappa_{p,q}(aa^*, \ldots, aa^*) = \sum_{(\mathcal{V},\pi) \in \mathcal{PS}_{NC}(p,q)} \beta_{(\mathcal{V},\pi)}. \] (6)
\[\kappa_{p,q}(aa^*, \ldots, aa^*) = \sum_{(\nu,\pi) \in \text{PS}_{NC}(p,q)} \beta_{\nu,\pi}(a) \].

Figure: On the left we see the permutation \(\pi = (1, 14, 15, 12)(2, 3)(4, 5, 18, 13)(6, 7)(8, 9, 10, 11, 16, 17) \). \(\pi \) is in \(S_{NC}^- (12, 6) \) and \(\gamma_{12,6}(1, \pi)^{-1} \) separates the points of \(O = \{1, 3, 5, 7, 9, 11, 13, 15, 17\} \). On the right is \(\tilde{\pi} = (1)(2, 9)(3)(4, 5, 8)(6, 7) \). to the even numbers.
Definition

Let \((A, \tau, \tau_2)\) be a second order non-commutative probability space. Let \(x\) be a second order even element. Define
\[
\beta_n^{(x)} := \kappa_{2n}^{(x)} := \kappa_{2n}(x, \ldots, x)
\]
and letting \(\kappa_{p, q}^{(x)} = \kappa_{p, q}(x, \ldots, x)\), we set
\[
\beta_{p, q}^{(x)} := \kappa_{2p, 2q}^{(x)} + \sum_{\pi \in S_{NC}^{all, +}(2p, 2q)} \kappa_{p, q}^{(x)}
\]
(7)

Theorem

Let \(x\) be an even element with determining sequences \((\beta_n^{(x)})_{n \geq 1}\) and \((\beta_{p, q}^{(x)})_{p, q \geq 1}\) then the second order cumulants of \(x^2\) are given by
\[
\kappa_{p, q}(x^2, \ldots, x^2) = \sum_{(\nu, \pi) \in PS_{NC}(p, q)} \beta_{\nu, \pi}^{(x)}.
\]
(8)
Main difference in using Mingo-Speicher-Tan formula:
Main difference in using Mingo-Speicher-Tan formula:
Main difference in using Mingo-Speicher-Tan formula:
Theorem

Let x be either second order even or second order R-diagonal element with determining sequences $(\beta_n)_{n \geq 1}$ and $(\beta_{p,q})_{p,q \geq 1}$, define the formal power series

\[B(z) = \frac{1}{z} \sum_{n \geq 1} \beta_n z^n, \quad B(z, w) = \frac{1}{zw} \sum_{p,q \geq 1} \beta_{p,q} z^p w^q, \]

\[C(z) = \frac{1}{z} + \frac{1}{z} \sum_{n \geq 1} \kappa_{xx}^* z^{-n}, \quad C(z, w) = \frac{1}{zw} \sum_{n,m \geq 1} \kappa_{p,q}^{xx} z^{-p} w^{-q}. \]

Then

\[\frac{1}{C(z)} + B(C(z)) = z \]

and

\[C(z, w) = C'(z) C'(w) B(C(z), C(w)) + \frac{\partial^2}{\partial z \partial w} \log \left(\frac{C(z) - C(w)}{z - w} \right). \]
Examples
s is called a second order semi-circular operator if its first order cumulants satisfy $\kappa_n(s, s, \ldots, s) = 0$ for all $n \neq 2$ and $\kappa_2(s, s) = 1$, and for all p and q the second order cumulants $\kappa_{p,q}$ are 0. This operator appears as the limit of GUE random matrices as the size tends to infinity.

Consider s_1 and s_2 second order free semicircular operators. We call $c = \frac{s_1 + is_2}{\sqrt{2}}$ a (second order) circular operator. The operator c is a second order R-diagonal. Indeed, since s_1 and s_2 are second order free, their mixed free cumulants vanish, also the second order cumulant of s_1 and s_2 vanish thus by linearity the same is true for c. That is, $\kappa_{p,q}(c(\epsilon_1), \ldots, c(\epsilon_{p+q})) = 0$ for all $\epsilon_1, \ldots, \epsilon_{p+q} \in \{\pm 1\}$.
The determining sequence of a semicircle operator is given by $\beta_1 = 1$ and $\beta_n = 0$ for $n > 0$. The second order determining sequence is given by $\beta_{k,k} = k$ and $\beta_{p,q} = 0$ if $p \neq q$. Thus second order cumulants of s^2.

\[
\kappa_{p,q}(s^2, \ldots, s^2) = \sum_{\pi \in S_{NC}(p,q)} \beta_\pi + \sum_{(\nu,\pi) \in \mathcal{P} S_{NC}(p,q)'} \beta_{(\nu,\pi)} = \sum_{\pi \in \mathcal{P} S_{NC}(p,q)'} \beta_{(\nu,\pi)}
\]

\[
= \sum_{k > 0} \binom{p}{k} \binom{q}{k} \beta_{k,k} = \sum_{k > 0} k \binom{p}{k} \binom{q}{k} = p \binom{p + q - 1}{p}.
\]
Recall that cc^* and s^2 both have a free Poisson distribution with respect to τ (i.e. $\tau\left((cc^*)^n\right) = \tau\left((s^2)^n\right) = \frac{1}{n+1}\binom{2n}{n}$). So one might expect that cc^* and s^2 have the same distribution in the second order level. We see that this is not the case.

Indeed, the determining sequences of c are given by $\beta_1 = 1$ and $\beta_n = 0$ for $n > 0$ and $\beta_{p,q} = 0$, for all p and q. It is readily seen that the second order cumulants of cc^* are all zero. i.e. $\kappa_{p,q}(cc^*, cc^*, ..., cc^*) = 0$.

Since the first order cumulants of cc^* are all 1. Then the (p, q)-fluctuation moments of cc^* count the number of elements in $S_{NC}(p, q)$.
Theorem (Second order Moments and Cumulants of Products of Free Variables)

Let a_1, \ldots, a_k be operators which are second order free and such that $\kappa_{p,q}^{(a_i)} = 0$ for all p and q. Denote by $a := a_1 a_2 \cdots a_k$.

$$\tau(a^p, a^q) = \sum_{\pi \in S_{NC}^{k-\text{alt}}(p,q)} \kappa_{Kr(\pi)}(a, \ldots, a). \quad (9)$$

Furthermore,

$$\kappa_{p,q}^{(a)} = \sum_{\pi \in S_{NC}^{k-\text{alt-eq}}(p,q)} \kappa_{Kr(\pi)}(a, \ldots, a). \quad (10)$$
Let $h = c_1 c_2 \cdots c_k$. Equations (9) and (10) of Theorem 26 are very useful. Indeed, a direct application of them gives a combinatorial description of the fluctuation moments and cumulants:

$$\tau_2(h^p, h^q) = |\text{SNC}_{\text{alt}}^k(kp, kq)| \quad \text{and} \quad \kappa_{p,q}(h, \ldots, h) = |\text{SNC}_{\text{alt}}^k(kp, kq)|,$$

a precise formula for this quantities or a generating function is not known for $k > 2$.

Octavio Arizmendi

On second order cumulants
The c be a 2nd order circular operator which is second order \ast-free from a. We are interested in the second order cumulants of cac^*. We can show that as in the first order level

$$\kappa_{p,q}(cac^*, \ldots, cac^*) = \sum_{(\nu,\pi) \in \mathcal{PS}_{NC}(p,q)} \kappa(\nu,\pi)(a, \ldots, a) = \tau_2(a^p, a^q).$$

A particular important example is the case when the fluctuation moments of a are 0. In this case $G_a(z, w) = 0$ and the formula above is reduced to

$$G_{cac^*}(z, w) = \frac{\partial^2}{\partial z \partial w} \log \left(\frac{G_{cac^*}(z) - G_{cac^*}(w)}{z - w} \right).$$

From the random matrix perspective this corresponds to the case when a is a limit of deterministic matrices and cac^* then corresponds to WAW^* where W is a Ginibre matrix and A is deterministic.
Two desirable properties for R-diagonal are not true in the second order level.

- If r is 2nd order R diagonal r^n is not necessarily 2nd order R-diagonal.
- If u is 2nd order free from a. ubu^* may not be 2nd order free from a.

Octavio Arizmendi

On second order cumulants
Thanks!