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Dataism

Yuval Noah Harari, in his book Homo Deus: A Brief History of
Tomorrow [2015], calls an emerging ideology or even a new form
of religion, in which ”information flow” is the ”supreme value”:
”Dataism declares that the universe consists of data flows, and the
value of any phenomenon or entity is determined by its
contribution to data processing”
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Dataism in Computational Neuroscience

1 Contemporary real complex systems gather Big Data: dEEG,
fMRI, MEG, optogenetics...

2 Data collected at wide spectrum of temporal and/or spatial
resolution

3 ...Number of voxels in a single fMRI snapshot - 105, time
series length for dEEG recordings ”arbitrarily” large: 103

signals per second
4 Need for redefining ”random variable” – XIX century concept

versus XXI century calls
5 Random matrix theory - probability theory where the random

variable takes values in the space of matrices.
Surprising simplification when dimension of the matrix tends
to infinity - free random variables [Voiculescu]

6 Practical asymptotics: 8 ≡ ∞
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Example 1: Inference: ”Free Poisson” - Wishart’s
distribution and more

Let us perform sequential measurements of a vector X̃i where
(i = 1, ...,N) at the series of times t = 1, ....M.

Each measurement is represented by X̃it (say, a signal from
the i-th electrode).

Standarize measurements (by subtracting the mean and
dividing by the variance for each i).

The correlation matrix Cij = 1
M

∑t=M
t=1 XitXjt is denoted as

C = 1
MXX †.

Wishart ensemble

If Xij are i.i.d. Gaussian entries, such an ensemble is called (real or
complex) Wishart ensemble, and it represents the benchmark of
pure noise (correlation matrix is a unit matrix 1N).

Maciej A. Nowak



Spectral distribution of Wishart ensemble

R-transform for Wishart:
R(z) = 1

1−rz , where
r = N/M is fixed, whereas
N,M tend to infinity.

Spectral function: ρ(λ) =
1
πrλ

√
(λ+ − λ)(λ− λ−)

where λ± = (1±
√
r)2

(Marcenko-Pastur
distribution).

For r → 0, spectral function
tends to Dirac’s delta ( pure
noise).

N = 1000,M = 5000→ r = 0.2
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Marcenko-Pastur distribution - dAEEG experiment

Spectral histograms: orange - experimental data, blue - reshuffled
data, line - theory
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Beyond pure noise, summary 2

In general, correlations are more complicated, e.g.
< XitXjs >= AijBts (spatial-temporal correlations).

Then, true measure is proportional to e−
1
2A
−1XB−1X † .

Power of FRV: we change variables
√
A−1X

√
B−1 ≡ Y , Then

Green’s function is calculated with respect to Wishart measure
exp − 12YY

†, but at the cost of generating moments Mk of
the type < tr[AYBY †]k >.
Using S-transform, we ”factorize” the spectrum of A from
YBY †. Then, using the cyclic property of the trace we
factorize B from pure Wishart. Assuming unknown structure
of correlators we minimize the error and optimize the
predictions for the true correlations A and B from the
measured moments.
Method works for non-Gaussian distributions ( e.g. heavy
tails) and other estimators than Pearson’s.
For more technical details of such FRV calculus, see e.g.
https://arxiv.org/abs/physics/0603024
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Example 2: Neural network model

Recurrent neural network
(infinite depth limit):

dxi
dt

= −xi +
N∑
j=1

Wijφ(xj)

Wij - a synaptic
connectivity matrix

φ a nonlinear
activation function

W a random
nonhermitian
(Ginibre) matrix

W elements undergo a diffusion:

Wjk = wjk + ivjk =

1√
2N

dBw
jk +

i√
2N

dBv
jk

- transition between the stationary and
chaotic dynamics occurs when the largest
real part of an eigenvalue exceeds 1.

H. Sompolinsky, A. Chrisanti, H.J. Sommers, Chaos in Random Neural Networks, PRL 61 259 (1988)
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Rajan-Abbott Model RAM

Two types of N neurons: excitatory (E) and inhibitory (I);
fractions fI ,E .

The synaptic strength of neurons has normal distribution

N (µE ,I ,
σ2E ,I
N ) with µE > 0 and µI < 0

The synaptic matrix decomposed W = M + GΛ, where M
deterministic, G a Ginibre matrix and Λ diagonal with σI ,E
The random part models variability in populations of neurons

RAM model introduces a balance condition: the sum of
excitations and inhibitions incoming to neuron is balanced to 0,
both on average i.e.

∑
j Mij = 0 and at each neuron

∑
j Wij = 0.

K. Rajan, L.F. Abbott, Eigenvalue Spectra of Random Matrices for Neural Networks PRL 97, 188104 (2006)
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Generic linearization around the fixed point

ẋi (t) =
∑

Aijxj(t) + ξi (t)

Multivariate Ornstein-Uhlenbeck dynamics with friction A and
fluctuations < ξi (t)ξj(t

′
) >= Bijδ(t − t

′
). We introduce

C (τ, t) =< δx(t + τ)δxT (t) >= eAτC (0, t) and
C0 = C (0, t =∞). Then Sylvester (Lyapunov) equation holds
(fluctuation-dissipation relation)

AC0 + C0A
T = −B

For non-normal A

C0 =

∫ ∞
0

eAsBeA
T sds = −

∑
k,l

|Rk >< Lk |B|Li >< Ri |
λk + λ̄l
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Violation of FDR and entropy production

2∂τC (τ) = −χ(τ)B + BχT (−τ) + ∆(τ)

where ∆(τ) = AC (τ)− C (τ)AT and explicitly

∆(τ) = −
∑
|Rk >< Ll |B|Lk >< Rl |

λk − λ̄l
λk + λ̄l

(eλkτθ(τ) + e−λ̄kτθ(−τ))

∆̄(τ) =
1
N
tr∆(τ) = − 1

N

∑
k,l

Okl
λk − λ̄l
λl + λ̄k

(eλkτθ(τ) + e−λ̄kτθ(−τ))

where Okl =< Lk |Ll >< Rl |Rk > is a Chalker-Mehlig operator.
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Entropy production rate per unit time (for B = 1)

Φ = −trB−1A∆(0) =
∑
k,l

Oklλk
λk − λ̄l
λl + λ̄k

Different modes are coupled!
Drammatic enhancement, since Okl growths with N. See Fyodorov,
Gudowska-Nowak, MAN, Tarnowski, 2310.09018v2 ( Nov 2023).
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Where is the freeness?

Random matrix theory focused in eigenvalues. Deadly mistake in
the case of non- normal matrices.
Conceptual breakthrough - Chalker-Mehlig paper on Ginibre
ensemble.
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How to address the problem of eigenvectors correctly?

Biorthogonality 〈Lk |Rj〉 = δkj , completeness
∑

k |Rk〉 〈Lk | = 1
Invariant under rescaling |Rk〉 → ck |Rk〉 and 〈Lk | → 〈Lk | c−1k

The simplest invariant quantity: matrix of overlaps
Oij = 〈Li |Lj〉 〈Rj |Ri 〉 Chalker Mehlig [1998]
Weighted density

D(z ,w) =

〈
1
N

N∑
j ,k=1

Ojkδ(z − λj)δ(w − λk)

〉
= Õ1(z)δ(z−w)+O2(z ,w)

with

Õ1(z ,w) =

〈
1
N

∑
k

Okkδ
(2)(z − λk)

〉 (
O1 =

1
N
Õ1

)
,

O2(z ,w) =

〈
1
N

∑
j 6=k

Ojkδ
(2)(z − λj)δ(2)(w − λk)

〉

Sum rules:
∑

j Oij = 1⇒
∫
d2wD(z ,w) = ρ(z)
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1-point functions [Janik et al., Feinberg and Zee ’97]

For the spectral density
〈
1
N

∑
δ(2)(z − λi )

〉
we need 2D Dirac

delta. Identity πδ(2)(z) = ∂z̄
1
z . Natural candidate

g(z) =
〈
1
N Tr(z − X )−1

〉
. Moment expansion valid only outside the

spectrum → does not provide the distribution of eigenvalues.
Idea: regularize

g(z)→ g(z ,w) =

〈
1
N

Tr
z̄ − X †

(z − X )(z̄ − X †) + |w |2

〉

Problem: how to deal with quadratic denominator? Linearize it

G (z) =

(
G11 G12
G21 G22

)
=

〈
1
N
bTr

(
z − X iw̄
iw z̄ − X †

)−1〉
[Janik et al]

〈
1
N
bTr

(
ε z − X

z̄ − X † ε

)−1〉
[Feinberg, Zee]
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This construction can be written in the resolvent form

G =
〈

(Q −X )−1
〉
, G (z) =

1
N
bTrG

with

Q =

(
z iw̄
iw z̄

)
, X =

(
X 0
0 X †

)
Moment expansion

G = Q−1 +
〈
Q−1XQ−1

〉
+
〈
Q−1XQ−1XQ−1

〉
+ . . .

Large N limit: planar diagrams → Schwinger-Dyson equation.
Note that O1(z) = − lim|w |→0

1
πG12G21, whereas

ρ(z , z̄) = lim|w |→0
1
π∂z̄G11
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2-point functions

Natural candidate

h(z1, z̄2) =
1
N

Tr(z1−X )−1(z̄2−X †)−1 =
1
N

∑
k,l

Okl
1

(z1 − λk)(z̄2 − λ̄l)

Same problems ⇒ regularization + linearization

K =
〈

(Q −X )−1 ⊗ (PT −XT )−1
〉

+ proper contraction of indices (like a block-trace) ⇒ 4× 4
matrix. One of its entries is the object of our interest.
Details in Arxiv: [1801.02526]
Luckily, for R-diagonal operators results simplify, e.g.
h(z1, z̄2) = 1

z1z̄2−r2out
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Rajan-Abbott Model RAM, cont.

The balance condition tames outliers, bringing them back to the disk, but

drastically increases the sensitivity of the spectrum, measured by the eigenvalue

condition number κ(λi ) = ||Li || × ||Ri || here Li (Ri ) is left (right) eigenvector to

the eigenvalue λi .
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Why non-normal matrices matter?

A matrix X is non-normal iff XX † 6= X †X .
If a non-normal matrix can be diagonalized, it possesses two sets of
eigenvectors: right |Rk > (column) and left < Lk | (rows),
satisfying eigenequations

< Lk |X =< Lk |λk , X |Rk >= λk |Rk >

The diagonalization is via similarity transformation X = SΛS−1

with S and S−1 encoding eigenvectors X =
∑

k |Rk > λk < Lk |.
The eigenvectors are not orthogonal < Rk |Rl >6= δkj but
biorthogonal < Lk |Rj >= δkj (⇔ S−1S = 1).
Resolution of identity

∑
k |Rk >< Lk | = 1 (⇔ SS−1 = 1).
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Temporal changes of networks seen as perturbations
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Adjacency matrix: A→ A′ = A + P How does the spectrum
change? In first order perturbation theory

λ′k = λk +< Lk |P|Rk >+O(||P||2)

Upper bound
|δλk | ¬ ||Lk || · ||Rk || · ||P|| = ||P||

√
< Lk |Lk >< Rk |Rk >.

Eigenvalue condition number [Wilkinson 1965]
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Transient dynamics

Consider d
dt |ψ >= (−µ+ X )|ψ > +δ(t)|ψ(0) >. Formal

solution reads |ψ(t) >= e(X−µ)t |ψ(0) >.

We define D(t) =< ψ(t)|ψ(t) >, and average this quantity
over spikes, so ||ψ(0)|| = 1.

Then, D(t) = e−2µt 1N tre
X †teXt = e−2µt 1N

∑
i ,j e

t(λi+λ̄j )Oij ,
where Oij =< Li |Lj >< Rj |Ri >

Dramatic effect comparing to normal case, since now
eigenmodes couple and get amplified by overlaps (!).
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Transition to chaos associated with instability at x = 0

Relaxation towards the fixed point measured by the squared Euclidean distance

D(t) =
∑N

ij=1 < x0|Li >< Ri |Rj >< Lj |x0 > e−2t+t(λi+λ̄j ). Non-orthogonality

of eigenmodes mixes them together resulting in oscillatory behavior of D(t)

(”interference effects”).
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Activity of neurons in the linearized dynamics

Onset of collective dynamics (right) driven by M and the
balance condition

Mean connectivity responsible for synchronization

E.G-N, M.A. Nowak, D.R. Chialvo, J.K. Ochab, W. Tarnowski From synaptic interactions to collective dynamics in

random neuronal networks models Neural Computations 32 395 (2020)
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Entropy production in Rajan-Abbott model - technicalities

From our formalism, we get

Φ = tr
∫ ∞
0

AeAseA
T sATds − tr

∫ ∞
0

A2eAseA
T sATds

Parametrization A = −µ1 + X and representation
f (X ) = 1

2πi

∮ f (z)dz
z−X boils to

Φ =
1

(2πi)2

∫ ∞
0

ds

∮
c
dz

∮
c
dw(z − µ)(w − z)es(z+w−2µ)R1(z ,w)

where we introduce a traced product of resolvents
R1(z ,w) = tr 1z−X

1
w−XT . Averaging over randomness yields for

above resolvent 1/(zw − 1)(1 + ν2/zw),( [jhep06(2018)152],
Shermann-Morrison formula (Tarnowski, 2011.08215v1)), so
explicit calculation is possible in the large N limit, yielding to

Φ = (1 + ν2)(µ+
√
µ2 − 1)−1 (1)

where A = −µ1 + X + νM, where M is a ranked one
perturbation defined in Rajan-Abbott paper.

Fyodorov, Gudowska-Nowak, MAN, Tarnowski, 2310.09018v2 (Nov 2023).
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Summary 2

Understanding temporal evolution of non-normal matrix
models requires considering the entangled dynamics of both
eigenvectors and eigenvalues, contrary to simple evolution of
the spectra of normal matrices for which eigenvectors
decouple in the presence of the spectral evolution

General feature of open systems, directed networks (graphs),
cross-correlations XY †, timed-lagged correlators etc.

Transient behaviour crucial in the stability analysis of the
network

Mechanism for synchronization? (memory, learning....)
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Example 3 - Taming Deep Networks

Pioneering application of FRV to Machine Learning by
Schoenholtz, Ganguli and Pennington (Google AI) in 2017.

Too small gradients versus too large gradients

Two universality classes found by S-transform for feed forward
networks

Training successful even for the depth of 200 layers.
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Taming Deep Networks - Resnets

For the residual network of L layers of N neurons, with weight
matrix for the l-th layer W l , and bias vectors bl , information
propagates as

x l = φ(hl) + ax l−1 hl = Wx l−1 + bl

where hl and x l are pre- and post-activations, φ is activation
function, a-parameter.

”Learning”is based by adjusting weights to minimize the error

∆W l
ij = −η∂E (xL, y)

∂W l
ij

= −η
∑
k,t

∂x lt
∂W l

ij

∂xLk
∂x lt

∂E (xL, y)

∂xLk
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Geometric random walk and input-ouput Jacobian

J = ∂xL

∂x0
=
[∏L

l=0(D
lW l + 1a)

]
, where D l

ij = φ′(hl)δij

1-dim geometric random walk xi = xi−1 + wxi−1, where
< w >= 0 and < w2 >= dt

Matricial geometric random walk Wi = (1 +
√
T/L)Wi−1,

T/L ≡ dt, <W >= 0 and Gaussian (Ginibre) property
<WijWkt >= dt 1N δitδjk .

Solving the spectrum of (
∏L

l=1(1 +
√
dtWl) with Wi being

GUE or Ginibre Ensemble is a complicated problem (complex
spectrum, coupling to eigenvectors), important in math and
physics (QFT)

In the limit of large L and large N, support of eigenvalues
solved analytically [Gudowska-Nowak, Janik, Jurkiewicz,
Nowak; 2003] using methods inspired by FRV

Full rigorous solution of the problem [Driver, Hall, Kemp;
2019]
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Our results - technicalities

We study singular values, i.e. the spectrum JJT .

Technically, spectrum ρ(λ) comes from imaginary part of the
resolved G (z) ∼< Tr(z − JJT )−1 >. The resolvent is inferred
from Free Random Variables techniques, in particular
Voiculescu S-transform, which turns out to read for our
problem

S(z) =
1
a2L

e−c(1+2z)/a2 → a2LG (z) = (zG (z)− 1)e(1−2zG(z))/a2

Effective cumulant c = 1
L

∑L
l=1 c

l
2, where c l2 is the squared

spectral radius of the matrix D lW l .

To calculate c for each activation function needed, we apply
dynamical mean field theory alike Google AI group did.
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Sample synthetic data tests

〈ϕ'2(hl)〉l

Theory

0 50 100 150 200
0.00

0.01

0.02

0.03

0.04

Sigmoid, second cumulant

no.of layer

Figure: Verification of the c2 for sigmoid activation function
φ(x) = 1

1+e−x .
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Sample synthetic data tests - cont.
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tanh, N=500, σW=0.3535, σb=0

Figure: Singular values of Jacobian for tanh non-linearity. Note that
already L = 10 matches well asymptotic result.
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Sample synthetic data tests - cont.
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Figure: Singular values of Jacobian for RELU non-linearity for various
effective cumulants - theory versus experiment.

Maciej A. Nowak



Isometry (universality) tested and confirmed on CIFAR-10
benchmark
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Jacobians calculated on data

L=∞ RMT c=0.125
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Figure: Jacobians calculated on data for several activation functions
and/or numbers of residual blocks.
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Summary 3

Singular spectrum for input-output Jacobian in the limit of
large width and depth of the network, is given by universal
formula.

Dependence on the type of activation function is encapsulated
in a single parameter, therefore ResNet can achieve
dynamical isometry for many different activation functions.

Results in agreement with data: synthetic data (Random
Matrix Theory) and CIFAR-10 classification data.

[More computer science details in Proc. of 22nd International Conference
on Artificial Intelligence and Statistics, PMLR 89, 2221-2230, 2019. ]
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Conclusions

FRV calculus provides powerful tool for multivariate
statistics in cognitive science.

FRV calculus can be used for analytic modelling of several
complex phenomena.

FRV concepts are rather unexploited in cognitive
neuroscience, despite enormous impact on others branches of
science and technology.

FRV can serve as an interlanguage (lingua franca) for
different subcommunities in cognitive sciences.

[Ewa Gudowska-Nowak, MAN, Freeness in cognitive science, https://arxiv.org/abs/2311.04307]
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