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The classical Berry-Esseen theorem

Let X,X1, X2, . . . be a sequence of i.i.d. random variables with mean
zero, unit variance and finite third absolute moment β3. The classical
Berry-Esseen theorem asserts

∆(µn, γ) ≤ cβ3√
n
, c > 0,

where
• µn is the distribution of the normalized sum 1√

n

∑n
i=1 Xi,

• γ is the standard normal distribution,
• ∆(·, ·) denotes the Kolmogorov distance, i.e.

∆(ν1, ν2) := sup
x∈R

∣∣ν1((−∞, x])− ν2((−∞, x])
∣∣

for probability measures (=pm’s) on R.

We know: The rate of convergence of order n−1/2 is sharp!
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Weighted sums in classical probability

Let us consider weighted sums, i.e. sums of the form

Sθ = θ1X1 + · · ·+ θnXn, θ = (θ1, . . . , θn) ∈ Sn−1

for X,X1, X2, . . . i.i.d. as before.

Theorem (Klartag, Sodin, 2011)
Assume that X has mean zero, unit variance and finite fourth moment
m4 and denote the distribution of Sθ by µθ. Choose ρ ∈ (0, 1). Then,
there exists a set F ⊂ Sn−1 with σn−1(F) ≥ 1− ρ such that for all
θ ∈ F one has

∆(µθ, γ) ≤ Cρm4

n
, Cρ > 0.

Here, σn−1 denotes the uniform probability measure on Sn−1.

We conclude: The random choice of the weights has an improving effect
on the rate of convergence compared to the standard
normalization via n− 1

2 .
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The (non-id) free Berry-Esseen theorem

Before we talk about weighted sums in free probability theory, let us
recall the free analogue of the Berry-Esseen theorem.

Theorem (Chistyakov, Götze, 2008)
Let ω denote Wigner’s semicircle distribution. Let ν1, . . . , νn be pm’s
with mean zero, variances σ2

i > 0 and finite third absolute moments
β3(νi). For Bn :=

(∑n
i=1 σ

2
i

)1/2 and ν�n :=DB−1
n
ν1 � · · ·�DB−1

n
νn,

we have

∆(ν�n, ω) ≤ c

√∑n
i=1 β3(νi)
B3
n

, c > 0.

In the special case that ν1, . . . , νn have the same distribution with
σ2

1 = 1, we have Bn =
√
n and ∆(ν�n, ω) ≤ cβ3(ν1)√

n
for c > 0.
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Weighted sums in free probability - Unbounded case

Theorem 1 (N., 2023, unbounded case)
Let µ be a pm with mean zero, unit variance and finite fourth moment
m4(µ). For i ∈ [n] and θ ∈ Sn−1, let µi := Dθi

µ and define
µθ := µ1 � · · ·� µn. Choose ρ ∈ (0, 1). Then, there exists a set
F ⊂ Sn−1 with σn−1(F) ≥ 1− ρ such that for all θ ∈ F we have

∆(µθ, ω) ≤ Cρ,µ

√
logn
n

, Cρ,µ > 0.

• not comparable to Klartag-Sodin
• still improves the known results in free probability:

– by free analogue of Berry-Esseen: ∆(µθ, ω) ≤ c
√∑n

i=1 |θi|3
– by Hölder:

∑n
i=1 |θi|3 ≥ n−

1/2

– a priori rate for ∆(µθ, ω) larger than n−1/4
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Weighted sums in free probability - Bounded case

We can get rid of the logarithmic factor in the bounded case.

Theorem 2 (N., 2023, bounded case)
In the setting of Theorem 1, assume that µ has compact support in
[−L,L] for L > 0 and let ρ ∈ (0, 1). Then, there exists a set F ⊂ Sn−1

with σn−1(F) ≥ 1− ρ such that for all θ ∈ F we have

∆(µθ, ω) ≤ Cρ,µ√
n
, Cρ,µ > 0.

Note: For most vectors θ the convolution µθ exhibits the same rate of
convergence as µθ∗ for θ∗ = (n−1/2, . . . , n−1/2), but
this is still not comparable to Klartag and Sodin’s result.
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Weighted sums in free probability - Free analogue of K-S

If we replace the Kolmogorov distance ∆ by

∆ε(ν1, ν2) := sup
x∈[−2+ε,2−ε]

|ν1((−2 + ε, x])− ν2((−2 + ε, x])|, ε > 0,

we get the free analogue of the Klartag-Sodin result.

Theorem 3 (N., 2023, Free analogue of Klartag-Sodin)
Let µ be as in Theorem 2 and let ρ, ε ∈ (0, 1). Then, there exists a set
F ⊂ Sn−1 with σn−1(F) ≥ 1− ρ such that for all θ ∈ F we have

∆ε(µθ, ω) ≤ Cε,ρ,µ
logn
n

, Cε,ρ,µ > 0.

Note: For the usual normalization with θ∗ = (n−1/2, . . . , n−1/2) we have
the sharp rate ∆ε(µθ∗ , ω) . 1√

n
.
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Weighted sums in free probability - Superconvergence

The randomization of the weights has an improving effect in the context
of superconvergence, too.

Theorem 4 (N., 2023, Superconvergence)
Let µ be as in Theorem 2 and let ρ ∈ (0, 1). Then, there exists a set
F ⊂ Sn−1 with σn−1(F) ≥ 1− ρ such that for all θ ∈ F we have

suppµθ ⊂
(
−2− Cρ,µ

n
, 2 + Cρ,µ

n

)
, Cρ,µ > 0.

Note: This improves upon the standard rate n−1/2 established by Kargin
for the usual normalization via θ∗ = (n−1/2, . . . , n−1/2).
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How to prove Berry-Esseen type estimates?

• useful tool: Bai’s inequality relating the Kolmogorov distance to
Cauchy transforms

• Cauchy transform Gν of a pm ν given by Gν(z) :=
∫
R
ν(dx)
z−x , z ∈ C+

Theorem (Bai’s inequality - Version by Götze, Tikhomirov, 2001)
Let ν be a pm on R with second moment m2(ν) = 1. Let a ∈ (0, 1) and
ε, τ be positive numbers such that 1

π

∫
|u|≤τ

1
u2+1du = 3

4 and ε > 2aτ
hold. Then, there exist constants D1, D2, D3 > 0 such that

∆(ν, ω) ≤ D1a+D2ε
3/2 +D3

∫ ∞
−∞
|Gν(u+ i)−Gω(u+ i)| du

+D3 sup
|u|≤2− ε

2

∫ 1

a

|Gν(u+ iv)−Gω(u+ iv)|dv.
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How to prove Berry-Esseen type estimates?

We have several methods to control the difference of Cauchy transforms.
Some of them are:

• via subordination functions (Chistyakov, Götze)
• via R- and K-transforms (Kargin)
• via operator theoretic approaches such as Lindeberg exchange

method (Austern, Banna, Mai, Speicher)
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Proof in the unbounded case - Subordination

We will need the concept of subordination functions.

Subordination (Voiculescu, Biane, Bercovici, Belinschi, Chistyakov, Götze)

Let ν1, . . . , νn be pm’s on R and define ν�n := ν1 � · · ·� νn. There
exist unique holomorphic functions Z1, . . . , Zn : C+ → C+ such that for
any z ∈ C+ we have:

Z1(z) + Z2(z) + · · ·+ Zn(z)− z = n− 1
Gν1(Z1(z)) ,

Gν1(Z1(z)) = · · · = Gνn
(Zn(z)) = Gν�n

(z).

The subordination functions Z1, . . . , Zn satisfy =Zi(z) ≥ =z for all
z ∈ C+, i ∈ [n].
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Proof in the unbounded case - Overview

Reminder:

Let µ be a pm with mean zero, unit variance and m4(µ) <∞. For
θ ∈ Sn−1, set µi := Dθi

µ, µθ := µ1 � · · ·� µn. Let Z1, . . . , Zn denote
the subordination functions with respect to µθ.

Theorem 1 (Unbounded case)
Let ρ ∈ (0, 1). Then, there exists a set F ⊂ Sn−1 with σn−1(F) ≥ 1− ρ
such that for all θ ∈ F we have ∆(µθ, ω) .

√
logn
n .

Overview:
1. Apply Bai’s inequality.
2. Define F ⊂ Sn−1 and fix θ ∈ F . Assume θ2

1 = mini∈[n] θ
2
i .

3. Derive and solve cubic functional equation for Z1.
4. Derive and solve quadratic functional equation for Z1.
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Step 1: Apply Bai’s inequality

• Let Gθ denote the Cauchy transform of µθ for θ ∈ Sn−1. By Bai’s
inequality, we have to bound∫ ∞

−∞
|Gθ(u+ i)−Gω(u+ i)|du

and

sup
|u|≤2− εn

2

∫ 1

an

|Gθ(u+iv)−Gω(u+iv)|dv

for appropriate choices of an and εn.
• We will use

|Gθ(z)−Gω(z)| ≤
∣∣∣∣ 1
Z1(z) −Gω(z)

∣∣∣∣+
∣∣∣∣Gθ(z)− 1

Z1(z)

∣∣∣∣
in order to handle both integrals.

• This means: We need to know Z1(z)!

12
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√

logn
n

↙

with cubic functional eq.

with quadratic functional eq.

↙



Step 2: Choice of F

• We choose F ⊂ Sn−1 in such a way that

max
i∈[n]
|θi| .

√
logn
n

and
n∑
i=1
|θi|k .

1
n

k−2
2

hold for all θ ∈ F and all k ∈ N with 2 < k ≤ 7.
• By choosing the implicit constants above appropriately, we can achieve
σn−1(F) ≥ 1− ρ for fixed ρ ∈ (0, 1) as requested.

• From now on, fix θ ∈ F and assume θ2
1 = mini∈[n] θ

2
i .
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Step 3: Cubic functional equation for Z1

3.1 Derivation of the cubic functional equation

Let Gi be the Cauchy transform of µi=Dθiµ.

• From subordination, we have

Z1(z)− z =
n∑
i=2

1
Gi(Zi(z))

− Zi(z), z ∈ C+.

• After manipulations:

Z3
1 (z)− zZ2

1 (z) + (1− θ2
1)Z1(z)− r(z) = 0

for z ∈ C+ for some appropriately defined r(z).
• Goal:

Z3
1 (z)− zZ2

1 (z) + Z1(z) ≈ 0.

This implies 1
Z1(z) ≈ Gω(z).
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Step 3: Cubic functional equation for Z1

3.2 Key steps in the derivation of the bound for the error r(z)

• For any z ∈ C+, we can expand

Zi(z)Gi(Zi(z)) = 1 + 1
Zi(z)

∫
R

u2

Zi(z)− u
µi(du).

• Thus, for any z ∈ C+ with =z &
√

logn
n , we have

|Zi(z)Gi(Zi(z))− 1| ≤ θ2
i

=z|Zi(z)|
.

logn
n

(=z)2 < 1.

→ starting point for all our estimates!
→ determines the final rate of convergence

• In the end: r(z) is of order 1√
n
for =z &

√
logn
n .
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Step 3: Cubic functional equation for Z1

3.3 Solving the cubic functional equation

• Recall: We wanted to bound

sup
|u|≤2− εn

2

∫ 1

an

∣∣∣∣Gθ(u+iv)− 1
Z1(u+ iv)

∣∣∣∣+
∣∣∣∣ 1
Z1(u+ iv) −Gω(u+iv)

∣∣∣∣ dv.
for appropriate εn and an by use of the cubic functional equation.

• From now on, let εn, an ≈
√

logn
n and consider the cubic functional

equation only in the set B given by

B :=
{
z ∈ C+ : |<z| ≤ 2− εn, 1 ≥ =z ≥ an

}

16
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√

logn
n

−2 −1 1 2
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Step 3: Cubic functional equation for Z1

3.3 Solving the cubic functional equation

In the end:

Z1(z) = 1
2

(
z − r1(z) +

√
z2 − 4 + r2(z)

)
, z ∈ B,

for some error terms r1(z) and r2(z) with |ri(z)| . 1√
n
, i = 1, 2.

Note:
• All calculations rely on the bound |r(z)| . 1√

n
holding for =z & an.

• The formula for 1/Z1 looks very similar to the formula for the Cauchy
transform Gω.
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Step 3: Cubic functional equation for Z1

3.4 Evaluating the integral

• Integration yields

sup
|u|≤2− εn

2

∫ 1

an

∣∣∣∣ 1
Z1(u+ iv) −Gω(u+ iv)

∣∣∣∣ dv . 1√
n
.

• In total:

sup
|u|≤2− εn

2

∫ 1

an

|Gθ(u+ iv)−Gω(u+ iv)| dv . 1√
n

+ logn
n

.
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Step 4: Quadratic functional equation for Z1

Proceeding similarly to the cubic functional equation, we can derive and
solve a quadratic functional equation for Z1.

We arrive at:∫ ∞
−∞
|Gθ(u+i)−Gω(u+i)|du . 1√

n
+ logn

n
.

The integral above does not decay faster than n−1/2 by our approach.
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Proof in the unbounded case - Final conclusion

Using Bai’s inequality, we obtain

∆(µθ, ω) . "contribution from the integrals" + an + ε
3/2
n

.
1√
n

+
√

logn
n

+
√

logn
n

3/2

.

√
logn
n

.

We note: The lower bound on =z, i.e. an, is responsible for the
logarithmic factor.

We can get rid of that factor if we assume that µ has compact support.
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Proof in the bounded case – K-transforms

We will combine the concept of subordination with K-transforms.

K-transforms
Let ν be a pm with supp ν ⊂ [−M,M ]. Then, the functional inverse
Kν(z) := G−1

ν (z) is well-defined and analytic in 0 < |z| < (6M)−1 with

Gν(Kν(z)) = z for 0 < |z| < (6M)−1, Kν(Gν(z)) = z for |z| > 7M.

and Laurent series expansion given by

Kν(z) = 1
z

+
∞∑
m=1

κm(ν)zm−1, 0 < |z| < (6M)−1.

Here, κm(ν) denotes the m-th free cumulant of ν.
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Proof in the bounded case - Overview

Reminder:

Theorem 2 (Bounded case)
Assume that suppµ ⊂ [−L,L] holds for some L > 0. Let ρ ∈ (0, 1).
Then, there exists a set F ⊂ Sn−1 with σn−1(F) ≥ 1− ρ such that for
all θ ∈ F we have ∆(µθ, ω) . 1√

n
.

Overview:

1. Apply Bai’s inequality.
2. Choose F ⊂ Sn−1 and fix θ ∈ F . Assume θ2

1 = mini∈[n] θ
2
i .

3. Derive lower bound for |Zi|.
4. Derive and solve cubic functional equation for Z1.
5. Derive and solve quadratic functional equation for Z1.

We will just consider Step 3.
22



Step 3: Lower bound for |Zi|

Assume that we have done the first two steps and that F ⊂ Sn−1 is defined
similarly to the unbounded case. Now, fix θ ∈ F and assume that

=z & (logn)3/2

n

holds. Then:
• By integration by parts, we have

|Gθ(z)| ≤ |Gω(z)|+ |Gω(z)−Gθ(z)| ≤ 1 + π∆(µθ, ω)
=z

. 1 +
√

logn
n

1
=z
.

√
n

logn .
1

6L|θi|
, i ∈ [n].

• We have suppµi ⊂ [−|θi|L, |θi|L].
⇒ K-transform Ki of µi is analytic in 0 < |z| < (6|θi|L)−1.
⇒ Ki(Gθ(z)) is analytic for all z with =z & (logn)3/2

n

• with identity theorem: Zi(z) = Ki(Gi(Zi(z))) = Ki(Gθ(z)) for z as
above

23
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Step 3: Lower bound for |Zi|

• Finally, for z ∈ C+ with =z & (logn)3/2

n and any i ∈ [n], we get:

|Zi(z)| = |Ki(Gθ(z))|

≥
∣∣∣∣ 1
Gθ(z)

∣∣∣∣− ∣∣θ2
iGθ(z)

∣∣− ∣∣∣∣Ki(Gθ(z))−
1

Gθ(z)
− θ2

iGθ(z)
∣∣∣∣

&
logn√
n
.
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Step 3: Lower bound for |Zi|

How does the lower bound on |Zi| help to improve the rate of convergence?

• In unbounded case: starting point was the inequality

|Zi(z)Gi(Zi(z))− 1| .
logn
n

=z|Zi(z)|︸ ︷︷ ︸
≥(=z)2

< 1, =z &
√

logn
n

• In bounded case:

|Zi(z)Gi(Zi(z))− 1| ≤
logn
n

=z|Zi(z)|
.

logn
n

=z · logn√
n

< 1, =z & 1√
n

• Choose an ≈ 1√
n
, εn ≈

√
logn
n and repeat the calculations for the cubic

and quadratic functional equation with small modifications.
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Free analogue of Klartag-Sodin

Theorem 3 (Free analogue of Klartag-Sodin)
Assume that suppµ ⊂ [−L,L] holds for some L > 0. Let ρ, ε ∈ (0, 1).
Then, there exists a set F ⊂ Sn−1 with σn−1(F) ≥ 1− ρ such that for
all θ ∈ F we have

∆ε(µθ, ω) = sup
x∈[−2+ε,2−ε]

|µθ((−2 + ε, x])− ω((−2 + ε, x])| . logn
n

.

Note that ∆ε guarantees that we stay away from the points −2, 2.

26
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Free analogue of Klartag-Sodin - Overview

Overview of the proof:

1. Choose F ⊂ Sn−1. Fix θ ∈ F with θ2
1 = mini∈[n] θ

2
i .

add new "condition"

2. Bound |Gθ| by constant.
not with integration by parts

3. Establish constant lower bound on |Zi|.

4. Relate ∆ε to Cauchy transforms.
replaces Bai’s inequality

5. Derive and solve (only) cubic functional equation for Z1.

possible due to the restriction to [−2 + ε, 2 − ε] in the definition of ∆ε

27
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Step 1: Choice of F

• In the proofs before, we mainly used that

max
i∈[n]
|θi| .

√
logn
n

,

n∑
i=1
|θi|k .

1
n

k−2
2

hold with high probability with respect to σn−1 for k ∈ N, 2 < k ≤ 7.
• Now, we additionally use that∣∣∣∣∣

n∑
i=1

θ3
i

∣∣∣∣∣ . 1
n

holds with high probability with respect to σn−1.
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Step 2 + 3: Bounds on |Gθ| and |Zi|

Let dL(·, ·) denote the Lévy distance between two pm’s and let ω1/2 have
semicircular distribution with variance 1

2 .

Theorem (Bao, Erdős, Schnelli, 2016)
Let I ⊂ (−2, 2) be a compact non-empty interval and fix η ∈ (0,∞).
Then, there exist constants b = b(ω1/2, I, η) > 0 and
Z = Z(ω1/2, I, η) <∞ such that whenever two pm’s ν1 and ν2 on R
satisfy

dL(ω1/2, ν1) + dL(ω1/2, ν2) ≤ b,

we have

max
x∈I,y∈[0,η]

|Gω(x+iy)−Gν1�ν2(x+iy)| ≤ Z
(
dL(ω1/2, ν1) + dL(ω1/2, ν2)

)
.
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Step 2 + 3: Bounds on |Gθ| and |Zi|

• Define

µ1
θ := µ1 � · · ·� µMn , µ2

θ = µMn+1 � · · ·� µn

with Mn chosen such that the variances of µ1
θ and µ2

θ are ≈ 1
2 .

• Then, we can prove dL(µiθ, ω1/2) . n−1/4, i = 1, 2.
• For sufficiently large n, we obtain

max
x∈[−2+ε,2−ε],

y∈[0,4]

|Gω(x+ iy)−Gθ(x+ iy)| . 1
n1/4

.

• For all z ∈ C+ with <z ∈ [−2 + ε, 2− ε], =z ∈ (0, 4] and large n, we
have

|Gθ(z)| ≤ Cε, Cε > 0.

• In particular: |Zi(z)| ≥ (2Cε)−1 for z, n as above and any i ∈ [n].
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Step 4: Relate ∆ε to Cauchy transforms

• With Stieltjes-Perron inversion formula:

∆ε(µθ, ω) = sup
x∈[−2+ε,2−ε]

∣∣∣∣limδ↓0 1
π

∫ x

−2+ε
= (Gθ(u+ iδ)−Gω(u+ iδ)) du

∣∣∣∣
• Apply Cauchy’s integral theorem:

∆ε(µθ, ω) ≤ 1
π

∫ 2−ε

−2+ε
|Gθ(u+ i)−Gω(u+ i)| du

+ sup
x∈[−2+ε,2−ε]

2
π

∫ 1

an

|Gθ(x+ iv)−Gω(x+ iv)| dv + In

with an := (logn)2n−1 and In given by

In := sup
x∈[−2+ε,2−ε]

2
π

∫ an

0
|Gθ(x+ iv)−Gω(x+ iv)| dv

• For sufficiently large n, we know:

|In| .
an
n1/4

.
1
n
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Step 5: Cubic functional equation for Z1

It remains to derive and solve a cubic (not a quadratic!) functional
equation for Z1. After that, we apply the results to∫ 2−ε

−2+ε
|Gθ(u+ i)−Gω(u+ i)| du

and

sup
x∈[−2+ε,2−ε]

∫ 1

an

|Gθ(x+ iv)−Gω(x+ iv)| dv

leading to the desired rate of convergence.

32
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Berry-Esseen type estimates in the free central limit theorem

Our approach generalizes to free additive convolutions of not necessarily
equally distributed compactly supported probability measures.

Theorem 5 (N., 2023)
Let µ1, . . . , µn be probability measures on R with suppµi ⊂ [−Mi,Mi]
for Mi > 0. Assume that each µi has mean zero and variance
σ2
i ∈ (0,∞). Define

Bn :=
(

n∑
i=1

σ2
i

)1/2

, Ln :=
∑n
i=1 M

3
i

B3
n

and let µ�n := DB−1
n
µ1 � · · ·�DB−1

n
µn. Then, we have

∆(µ�n, ω) ≤ cLn, c > 0.

Note: This improves upon the square root in the known rate(
B−3
n

∑n
i=1 β3(µi)

)1/2 at the cost of an increase in the nominator.
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Thank you for your attention!
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