Weighted Sums in Free Probability Theory

Leonie Neufeld Bielefeld University

UC Berkeley POAS May 15, 2023

Overview

Weighted sums in classical probability

Weighted sums in free probability

Outline of the proofs

Berry-Esseen type estimates in the free central limit theorem

Overview

Weighted sums in classical probability

Weighted sums in free probability

Outline of the proofs

Berry-Esseen type estimates in the free central limit theorem

The classical Berry-Esseen theorem

Let X,X_1,X_2,\ldots be a sequence of i.i.d. random variables with mean zero, unit variance and finite third absolute moment β_3 . The classical Berry-Esseen theorem asserts

$$\Delta(\mu_n, \gamma) \le \frac{c\beta_3}{\sqrt{n}}, \qquad c > 0,$$

where

- μ_n is the distribution of the normalized sum $\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i$,
- ullet γ is the standard normal distribution,
- $\Delta(\cdot, \cdot)$ denotes the Kolmogorov distance, i.e.

$$\Delta(\nu_1, \nu_2) := \sup_{x \in \mathbb{R}} \left| \nu_1((-\infty, x]) - \nu_2((-\infty, x]) \right|$$

for probability measures (=pm's) on \mathbb{R} .

We know: The rate of convergence of order $n^{-1/2}$ is sharp!

Weighted sums in classical probability

Let us consider weighted sums, i.e. sums of the form

$$S_{\theta} = \theta_1 X_1 + \dots + \theta_n X_n, \qquad \theta = (\theta_1, \dots, \theta_n) \in \mathbb{S}^{n-1}$$

for X, X_1, X_2, \ldots i.i.d. as before.

Theorem (Klartag, Sodin, 2011)

Assume that X has mean zero, unit variance and finite fourth moment m_4 and denote the distribution of S_{θ} by μ_{θ} . Choose $\rho \in (0,1)$. Then, there exists a set $\mathcal{F} \subset \mathbb{S}^{n-1}$ with $\sigma_{n-1}(\mathcal{F}) \geq 1-\rho$ such that for all $\theta \in \mathcal{F}$ one has

$$\Delta(\mu_{\theta}, \gamma) \le \frac{C_{\rho} m_4}{n}, \qquad C_{\rho} > 0.$$

Here, σ_{n-1} denotes the uniform probability measure on \mathbb{S}^{n-1} .

We conclude: The random choice of the weights has an improving effect on the rate of convergence compared to the standard normalization via $n^{-\frac{1}{2}}.$

Overview

Weighted sums in classical probability

Weighted sums in free probability

Outline of the proofs

Berry-Esseen type estimates in the free central limit theorem

The (non-id) free Berry-Esseen theorem

Before we talk about weighted sums in free probability theory, let us recall the free analogue of the Berry-Esseen theorem.

Theorem (Chistyakov, Götze, 2008)

Let ω denote Wigner's semicircle distribution. Let ν_1,\dots,ν_n be pm's with mean zero, variances $\sigma_i^2>0$ and finite third absolute moments $\beta_3(\nu_i)$. For $B_n\!:=\!\left(\sum_{i=1}^n\sigma_i^2\right)^{1/2}$ and $\nu_{\boxplus n}:=\!D_{B_n^{-1}}\nu_1\boxplus\dots\boxplus D_{B_n^{-1}}\nu_n$, we have

$$\Delta(\nu_{\boxplus n}, \omega) \le c \sqrt{\frac{\sum_{i=1}^{n} \beta_3(\nu_i)}{B_n^3}}, \qquad c > 0.$$

In the special case that ν_1,\dots,ν_n have the same distribution with $\sigma_1^2=1$, we have $B_n=\sqrt{n}$ and $\Delta(\nu_{\boxplus n},\omega)\leq \frac{c\beta_3(\nu_1)}{\sqrt{n}}$ for c>0.

Weighted sums in free probability - Unbounded case

Theorem 1 (N., 2023, unbounded case)

Let μ be a pm with mean zero, unit variance and finite fourth moment $m_4(\mu)$. For $i\in [n]$ and $\theta\in\mathbb{S}^{n-1}$, let $\mu_i:=D_{\theta_i}\mu$ and define $\mu_\theta:=\mu_1\boxplus\cdots\boxplus\mu_n$. Choose $\rho\in(0,1)$. Then, there exists a set $\mathcal{F}\subset\mathbb{S}^{n-1}$ with $\sigma_{n-1}(\mathcal{F})\geq 1-\rho$ such that for all $\theta\in\mathcal{F}$ we have

$$\Delta(\mu_{\theta}, \omega) \le C_{\rho,\mu} \sqrt{\frac{\log n}{n}}, \qquad C_{\rho,\mu} > 0.$$

- not comparable to Klartag-Sodin
- still improves the known results in free probability:
 - by free analogue of Berry-Esseen: $\Delta(\mu_{\theta}, \omega) \leq c \sqrt{\sum_{i=1}^{n} |\theta_{i}|^{3}}$
 - by Hölder: $\sum_{i=1}^{n} |\theta_i|^3 \ge n^{-1/2}$
 - a priori rate for $\Delta(\mu_{\theta},\omega)$ larger than $n^{-1/4}$

Weighted sums in free probability - Bounded case

We can get rid of the logarithmic factor in the bounded case.

Theorem 2 (N., 2023, bounded case)

In the setting of Theorem 1, assume that μ has compact support in [-L,L] for L>0 and let $\rho\in(0,1)$. Then, there exists a set $\mathcal{F}\subset\mathbb{S}^{n-1}$ with $\sigma_{n-1}(\mathcal{F})\geq 1-\rho$ such that for all $\theta\in\mathcal{F}$ we have

$$\Delta(\mu_{\theta}, \omega) \le \frac{C_{\rho,\mu}}{\sqrt{n}}, \qquad C_{\rho,\mu} > 0.$$

Note: For most vectors θ the convolution μ_{θ} exhibits the same rate of convergence as μ_{θ^*} for $\theta^* = (n^{-1/2}, \ldots, n^{-1/2})$, but this is still not comparable to Klartag and Sodin's result.

Weighted sums in free probability - Free analogue of K-S

If we replace the Kolmogorov distance Δ by

$$\Delta_{\varepsilon}(\nu_1,\nu_2) := \sup_{x \in [-2+\varepsilon,2-\varepsilon]} |\nu_1((-2+\varepsilon,x]) - \nu_2((-2+\varepsilon,x])|, \qquad \varepsilon > 0,$$

we get the free analogue of the Klartag-Sodin result.

Theorem 3 (N., 2023, Free analogue of Klartag-Sodin)

Let μ be as in Theorem 2 and let $\rho, \varepsilon \in (0,1)$. Then, there exists a set $\mathcal{F} \subset \mathbb{S}^{n-1}$ with $\sigma_{n-1}(\mathcal{F}) \geq 1 - \rho$ such that for all $\theta \in \mathcal{F}$ we have

$$\Delta_{\varepsilon}(\mu_{\theta}, \omega) \le C_{\varepsilon, \rho, \mu} \frac{\log n}{n}, \qquad C_{\varepsilon, \rho, \mu} > 0.$$

Note: For the usual normalization with $\theta^*=(n^{-1/2},\dots,n^{-1/2})$ we have the sharp rate $\Delta_\varepsilon(\mu_{\theta^*},\omega)\lesssim \frac{1}{\sqrt{n}}$.

Weighted sums in free probability - Superconvergence

The randomization of the weights has an improving effect in the context of superconvergence, too.

Theorem 4 (N., 2023, Superconvergence)

Let μ be as in Theorem 2 and let $\rho \in (0,1)$. Then, there exists a set $\mathcal{F} \subset \mathbb{S}^{n-1}$ with $\sigma_{n-1}(\mathcal{F}) \geq 1 - \rho$ such that for all $\theta \in \mathcal{F}$ we have

$$\operatorname{supp} \mu_{\theta} \subset \left(-2 - \frac{C_{\rho,\mu}}{n}, 2 + \frac{C_{\rho,\mu}}{n}\right), \qquad C_{\rho,\mu} > 0.$$

Note: This improves upon the standard rate $n^{-1/2}$ established by Kargin for the usual normalization via $\theta^* = (n^{-1/2}, \dots, n^{-1/2})$.

Overview

Weighted sums in classical probability

Weighted sums in free probability

Outline of the proofs

Berry-Esseen type estimates in the free central limit theorem

How to prove Berry-Esseen type estimates?

- useful tool: Bai's inequality relating the Kolmogorov distance to Cauchy transforms
- \bullet Cauchy transform G_{ν} of a pm ν given by $G_{\nu}(z):=\int_{\mathbb{R}}\frac{\nu(dx)}{z-x}$, $z\in\mathbb{C}^{+}$

Theorem (Bai's inequality - Version by Götze, Tikhomirov, 2001)

Let ν be a pm on $\mathbb R$ with second moment $m_2(\nu)=1$. Let $a\in (0,1)$ and ε, τ be positive numbers such that $\frac{1}{\pi}\int_{|u|\leq \tau}\frac{1}{u^2+1}du=\frac{3}{4}$ and $\varepsilon>2a\tau$ hold. Then, there exist constants $D_1,D_2,D_3>0$ such that

$$\Delta(\nu,\omega) \le D_1 a + D_2 \varepsilon^{3/2} + D_3 \int_{-\infty}^{\infty} |G_{\nu}(u+i) - G_{\omega}(u+i)| du + D_3 \sup_{|u| \le 2 - \frac{\varepsilon}{2}} \int_a^1 |G_{\nu}(u+iv) - G_{\omega}(u+iv)| dv.$$

How to prove Berry-Esseen type estimates?

We have several methods to control the difference of Cauchy transforms. Some of them are:

- via subordination functions (Chistyakov, Götze)
- via R- and K-transforms (Kargin)
- via operator theoretic approaches such as Lindeberg exchange method (Austern, Banna, Mai, Speicher)

Proof in the unbounded case - Subordination

We will need the concept of subordination functions.

Subordination (Voiculescu, Biane, Bercovici, Belinschi, Chistyakov, Götze)

Let ν_1,\ldots,ν_n be pm's on $\mathbb R$ and define $\nu_{\boxplus n}:=\nu_1\boxplus\cdots\boxplus\nu_n$. There exist unique holomorphic functions $Z_1,\ldots,Z_n:\mathbb C^+\to\mathbb C^+$ such that for any $z\in\mathbb C^+$ we have:

$$Z_1(z) + Z_2(z) + \dots + Z_n(z) - z = \frac{n-1}{G_{\nu_1}(Z_1(z))},$$

$$G_{\nu_1}(Z_1(z)) = \dots = G_{\nu_n}(Z_n(z)) = G_{\nu_{\boxplus_n}}(z).$$

The subordination functions Z_1, \ldots, Z_n satisfy $\Im Z_i(z) \geq \Im z$ for all $z \in \mathbb{C}^+, i \in [n]$.

Proof in the unbounded case - Overview

Reminder:

Let μ be a pm with mean zero, unit variance and $m_4(\mu) < \infty$. For $\theta \in \mathbb{S}^{n-1}$, set $\mu_i := D_{\theta_i}\mu$, $\mu_{\theta} := \mu_1 \boxplus \cdots \boxplus \mu_n$. Let Z_1, \ldots, Z_n denote the subordination functions with respect to μ_{θ} .

Theorem 1 (Unbounded case)

Let $\rho \in (0,1)$. Then, there exists a set $\mathcal{F} \subset \mathbb{S}^{n-1}$ with $\sigma_{n-1}(\mathcal{F}) \geq 1-\rho$ such that for all $\theta \in \mathcal{F}$ we have $\Delta(\mu_{\theta},\omega) \lesssim \sqrt{\frac{\log n}{n}}$.

Overview:

- 1. Apply Bai's inequality.
- 2. Define $\mathcal{F} \subset \mathbb{S}^{n-1}$ and fix $\theta \in \mathcal{F}$. Assume $\theta_1^2 = \min_{i \in [n]} \theta_i^2$.
- 3. Derive and solve cubic functional equation for Z_1 .
- 4. Derive and solve quadratic functional equation for Z_1 .

• Let G_{θ} denote the Cauchy transform of μ_{θ} for $\theta \in \mathbb{S}^{n-1}$. By Bai's inequality, we have to bound with quadratic functional eq.

$$\int_{-\infty}^{\infty} |G_{\theta}(u+i) - G_{\omega}(u+i)| du$$

and

$$\sup_{|u|\leq 2-\frac{\varepsilon_n}{2}}\int_{a_n}^1 \!\!|G_\theta(u\!+\!iv)-G_\omega(u\!+\!iv)|dv$$

for appropriate choices of a_n and ε_n .

• We will use

$$|G_{\theta}(z) - G_{\omega}(z)| \le \left| \frac{1}{Z_1(z)} - G_{\omega}(z) \right| + \left| G_{\theta}(z) - \frac{1}{Z_1(z)} \right|$$

in order to handle both integrals.

• This means: We need to know $Z_1(z)!$

• We choose $\mathcal{F} \subset \mathbb{S}^{n-1}$ in such a way that

$$\max_{i \in [n]} |\theta_i| \lesssim \sqrt{\frac{\log n}{n}}$$

and

$$\sum_{i=1}^{n} |\theta_i|^k \lesssim \frac{1}{n^{\frac{k-2}{2}}}$$

hold for all $\theta \in \mathcal{F}$ and all $k \in \mathbb{N}$ with $2 < k \le 7$.

- By choosing the implicit constants above appropriately, we can achieve $\sigma_{n-1}(\mathcal{F}) \geq 1-\rho$ for fixed $\rho \in (0,1)$ as requested.
- From now on, fix $\theta \in \mathcal{F}$ and assume $\theta_1^2 = \min_{i \in [n]} \theta_i^2$.

3.1 Derivation of the cubic functional equation

Let G_i be the Cauchy transform of $\mu_i = D_{\theta_i} \mu$.

• From subordination, we have

$$Z_1(z) - z = \sum_{i=2}^n \frac{1}{G_i(Z_i(z))} - Z_i(z), \qquad z \in \mathbb{C}^+.$$

After manipulations:

$$Z_1^3(z) - zZ_1^2(z) + (1 - \theta_1^2)Z_1(z) - r(z) = 0$$

for $z \in \mathbb{C}^+$ for some appropriately defined r(z).

Goal:

$$Z_1^3(z) - zZ_1^2(z) + Z_1(z) \approx 0.$$

This implies $\frac{1}{Z_1(z)} \approx G_{\omega}(z)$.

3.2 Key steps in the derivation of the bound for the error r(z)

• For any $z \in \mathbb{C}^+$, we can expand

$$Z_i(z)G_i(Z_i(z)) = 1 + \frac{1}{Z_i(z)} \int_{\mathbb{R}} \frac{u^2}{Z_i(z) - u} \mu_i(du).$$

 \bullet Thus, for any $z\in\mathbb{C}^+$ with $\Im z\gtrsim\sqrt{\frac{\log n}{n}},$ we have

$$|Z_i(z)G_i(Z_i(z)) - 1| \le \frac{\theta_i^2}{\Im z |Z_i(z)|} \lesssim \frac{\frac{\log n}{n}}{(\Im z)^2} < 1.$$

- \rightarrow starting point for all our estimates!
- $\,\rightarrow\,$ determines the final rate of convergence
- In the end: r(z) is of order $\frac{1}{\sqrt{n}}$ for $\Im z \gtrsim \sqrt{\frac{\log n}{n}}$.

3.3 Solving the cubic functional equation

Recall: We wanted to bound

$$\sup_{|u| \le 2 - \frac{\varepsilon_n}{2}} \int_{a_n}^1 \left| G_{\theta}(u+iv) - \frac{1}{Z_1(u+iv)} \right| + \left| \frac{1}{Z_1(u+iv)} - G_{\omega}(u+iv) \right| dv.$$

for appropriate ε_n and a_n by use of the cubic functional equation.

• From now on, let $\varepsilon_n, a_n \approx \sqrt{\frac{\log n}{n}}$ and consider the cubic functional equation only in the set B given by

$$B := \left\{ z \in \mathbb{C}^+ : |\Re z| \le 2 - \varepsilon_n, 1 \ge \Im z \ge a_n \right\}$$

3.3 Solving the cubic functional equation

In the end:

$$Z_1(z) = \frac{1}{2} \left(z - r_1(z) + \sqrt{z^2 - 4 + r_2(z)} \right), \quad z \in B,$$

for some error terms $r_1(z)$ and $r_2(z)$ with $|r_i(z)| \lesssim \frac{1}{\sqrt{n}}$, i = 1, 2.

Note:

- All calculations rely on the bound $|r(z)| \lesssim \frac{1}{\sqrt{n}}$ holding for $\Im z \gtrsim a_n$.
- The formula for $^1\!/Z_1$ looks very similar to the formula for the Cauchy transform G_ω .

3.4 Evaluating the integral

• Integration yields

$$\sup_{|u| \le 2 - \frac{\varepsilon_n}{2}} \int_{a_n}^1 \left| \frac{1}{Z_1(u + iv)} - G_{\omega}(u + iv) \right| dv \lesssim \frac{1}{\sqrt{n}}.$$

• In total:

$$\sup_{|u| \le 2 - \frac{\varepsilon_n}{2}} \int_{a_n}^1 |G_{\theta}(u + iv) - G_{\omega}(u + iv)| dv \lesssim \frac{1}{\sqrt{n}} + \frac{\log n}{n}.$$

Proceeding similarly to the cubic functional equation, we can derive and solve a quadratic functional equation for Z_1 .

We arrive at:

$$\int_{-\infty}^{\infty} |G_{\theta}(u+i) - G_{\omega}(u+i)| du \lesssim \frac{1}{\sqrt{n}} + \frac{\log n}{n}.$$

The integral above does not decay faster than $n^{-1/2}$ by our approach.

Using Bai's inequality, we obtain

$$\begin{split} \Delta(\mu_{\theta}, \omega) &\lesssim \text{"contribution from the integrals"} + a_n + \varepsilon_n^{3/2} \\ &\lesssim \frac{1}{\sqrt{n}} + \sqrt{\frac{\log n}{n}} + \sqrt{\frac{\log n}{n}}^{3/2} \lesssim \sqrt{\frac{\log n}{n}}. \end{split}$$

We note: The lower bound on $\Im z$, i.e. a_n , is responsible for the logarithmic factor.

We can get rid of that factor if we assume that μ has compact support.

Proof in the bounded case – *K*-transforms

We will combine the concept of subordination with K-transforms.

K-transforms

Let ν be a pm with $\mathrm{supp}\, \nu \subset [-M,M].$ Then, the functional inverse $K_{\nu}(z):=G_{\nu}^{-1}(z)$ is well-defined and analytic in $0<|z|<(6M)^{-1}$ with

$$G_{\nu}(K_{\nu}(z)) = z \text{ for } 0 < |z| < (6M)^{-1}, \ \ K_{\nu}(G_{\nu}(z)) = z \text{ for } |z| > 7M.$$

and Laurent series expansion given by

$$K_{\nu}(z) = \frac{1}{z} + \sum_{m=1}^{\infty} \kappa_m(\nu) z^{m-1}, \qquad 0 < |z| < (6M)^{-1}.$$

Here, $\kappa_m(\nu)$ denotes the m-th free cumulant of ν .

Proof in the bounded case - Overview

Reminder:

Theorem 2 (Bounded case)

Assume that supp $\mu \subset [-L, L]$ holds for some L > 0. Let $\rho \in (0, 1)$. Then, there exists a set $\mathcal{F} \subset \mathbb{S}^{n-1}$ with $\sigma_{n-1}(\mathcal{F}) \geq 1 - \rho$ such that for all $\theta \in \mathcal{F}$ we have $\Delta(\mu_{\theta}, \omega) \lesssim \frac{1}{\sqrt{n}}$.

Overview:

- 1. Apply Bai's inequality.
- 2. Choose $\mathcal{F} \subset \mathbb{S}^{n-1}$ and fix $\theta \in \mathcal{F}$. Assume $\theta_1^2 = \min_{i \in [n]} \theta_i^2$.
- 3. Derive lower bound for $|Z_i|$.
- 4. Derive and solve cubic functional equation for Z_1 .
- 5. Derive and solve quadratic functional equation for Z_1 .

We will just consider Step 3.

Step 3: Lower bound for $|Z_i|$

Assume that we have done the first two steps and that $\mathcal{F} \subset \mathbb{S}^{n-1}$ is defined similarly to the unbounded case. Now, fix $\theta \in \mathcal{F}$ and assume that

$$\Im z \gtrsim \frac{(\log n)^{3/2}}{n}$$

holds. Then:

• By integration by parts, we have

$$|G_{\theta}(z)| \le |G_{\omega}(z)| + |G_{\omega}(z) - G_{\theta}(z)| \le 1 + \frac{\pi \Delta(\mu_{\theta}, \omega)}{\Im z}$$

$$\lesssim 1 + \sqrt{\frac{\log n}{n}} \frac{1}{\Im z} \lesssim \frac{\sqrt{n}}{\log n} \lesssim \frac{1}{6L|\theta_{i}|}, \quad i \in [n].$$

- We have supp $\mu_i \subset [-|\theta_i|L, |\theta_i|L]$.
 - \Rightarrow K-transform K_i of μ_i is analytic in $0 < |z| < (6|\theta_i|L)^{-1}$.
 - $\Rightarrow K_i(G_{\theta}(z))$ is analytic for all z with $\Im z \gtrsim \frac{(\log n)^{3/2}}{n}$
- with identity theorem: $Z_i(z) = K_i(G_i(Z_i(z))) = K_i(G_\theta(z))$ for z as above

• Finally, for $z \in \mathbb{C}^+$ with $\Im z \gtrsim \frac{(\log n)^{3/2}}{n}$ and any $i \in [n]$, we get:

$$|Z_{i}(z)| = |K_{i}(G_{\theta}(z))|$$

$$\geq \left| \frac{1}{G_{\theta}(z)} \right| - \left| \theta_{i}^{2} G_{\theta}(z) \right| - \left| K_{i}(G_{\theta}(z)) - \frac{1}{G_{\theta}(z)} - \theta_{i}^{2} G_{\theta}(z) \right|$$

$$\gtrsim \frac{\log n}{\sqrt{n}}.$$

How does the lower bound on $|Z_i|$ help to improve the rate of convergence?

• In unbounded case: starting point was the inequality

$$|Z_i(z)G_i(Z_i(z)) - 1| \lesssim \underbrace{\frac{\log n}{n}}_{\geq (\Im z)^2} < 1, \qquad \Im z \gtrsim \sqrt{\frac{\log n}{n}}$$

• In bounded case:

$$|Z_i(z)G_i(Z_i(z)) - 1| \le \frac{\frac{\log n}{n}}{\Im z |Z_i(z)|} \lesssim \frac{\frac{\log n}{n}}{\Im z \cdot \frac{\log n}{\sqrt{n}}} < 1, \qquad \Im z \gtrsim \frac{1}{\sqrt{n}}$$

• Choose $a_n \approx \frac{1}{\sqrt{n}}$, $\varepsilon_n \approx \sqrt{\frac{\log n}{n}}$ and repeat the calculations for the cubic and quadratic functional equation with small modifications.

Free analogue of Klartag-Sodin

Theorem 3 (Free analogue of Klartag-Sodin)

Assume that $\operatorname{supp} \mu \subset [-L,L]$ holds for some L>0. Let $\rho,\varepsilon\in(0,1)$. Then, there exists a set $\mathcal{F}\subset\mathbb{S}^{n-1}$ with $\sigma_{n-1}(\mathcal{F})\geq 1-\rho$ such that for all $\theta\in\mathcal{F}$ we have

$$\Delta_{\varepsilon}(\mu_{\theta}, \omega) = \sup_{x \in [-2+\varepsilon, 2-\varepsilon]} |\mu_{\theta}((-2+\varepsilon, x]) - \omega((-2+\varepsilon, x])| \lesssim \frac{\log n}{n}.$$

Note that Δ_{ε} guarantees that we stay away from the points -2, 2.

Overview of the proof:

- 1. Choose $\mathcal{F} \subset \mathbb{S}^{n-1}$. Fix $\theta \in \mathcal{F}$ with $\theta_1^2 = \min_{i \in [n]} \theta_i^2$. add new "condition"
- 2. Bound $|G_{\theta}|$ by constant. not with integration by parts
- 3. Establish constant lower bound on $|Z_i|$.
- 4. Relate Δ_{ε} to Cauchy transforms. replaces Bai's inequality
- 5. Derive and solve (only) cubic functional equation for Z_1 .

 possible due to the restriction to $[-2+\varepsilon,2-\varepsilon]$ in the definition of Δ_{ε}

• In the proofs before, we mainly used that

$$\max_{i \in [n]} |\theta_i| \lesssim \sqrt{\frac{\log n}{n}}, \qquad \sum_{i=1}^n |\theta_i|^k \lesssim \frac{1}{n^{\frac{k-2}{2}}}$$

hold with high probability with respect to σ_{n-1} for $k \in \mathbb{N}, 2 < k \leq 7$.

• Now, we additionally use that

$$\left| \sum_{i=1}^{n} \theta_i^3 \right| \lesssim \frac{1}{n}$$

holds with high probability with respect to σ_{n-1} .

Let $d_L(\cdot,\cdot)$ denote the Lévy distance between two pm's and let $\omega_{1/2}$ have semicircular distribution with variance $\frac{1}{2}$.

Theorem (Bao, Erdős, Schnelli, 2016)

Let $\mathcal{I}\subset (-2,2)$ be a compact non-empty interval and fix $\eta\in (0,\infty)$. Then, there exist constants $b=b(\omega_{1/2},\mathcal{I},\eta)>0$ and $Z=Z(\omega_{1/2},\mathcal{I},\eta)<\infty$ such that whenever two pm's ν_1 and ν_2 on $\mathbb R$ satisfy

$$d_L(\omega_{1/2}, \nu_1) + d_L(\omega_{1/2}, \nu_2) \le b,$$

we have

$$\max_{x \in \mathcal{I}, y \in [0, \eta]} |G_{\omega}(x + iy) - G_{\nu_1 \boxplus \nu_2}(x + iy)| \le Z \left(d_L(\omega_{1/2}, \nu_1) + d_L(\omega_{1/2}, \nu_2) \right).$$

Define

$$\mu_{\theta}^1 := \mu_1 \boxplus \cdots \boxplus \mu_{M_n}, \qquad \mu_{\theta}^2 = \mu_{M_n+1} \boxplus \cdots \boxplus \mu_n$$

with M_n chosen such that the variances of μ_{θ}^1 and μ_{θ}^2 are $\approx \frac{1}{2}$.

- Then, we can prove $d_L(\mu_{\theta}^i, \omega_{1/2}) \lesssim n^{-1/4}$, i = 1, 2.
- ullet For sufficiently large n, we obtain

$$\max_{\substack{x \in [-2+\varepsilon, 2-\varepsilon], \\ y \in [0,4]}} |G_{\omega}(x+iy) - G_{\theta}(x+iy)| \lesssim \frac{1}{n^{1/4}}.$$

• For all $z\in\mathbb{C}^+$ with $\Re z\in[-2+arepsilon,2-arepsilon]$, $\Im z\in(0,4]$ and large n, we have

$$|G_{\theta}(z)| \le C_{\varepsilon}, \qquad C_{\varepsilon} > 0.$$

• In particular: $|Z_i(z)| \ge (2C_{\varepsilon})^{-1}$ for z, n as above and any $i \in [n]$.

Step 4: Relate Δ_{ε} to Cauchy transforms

• With Stieltjes-Perron inversion formula:

$$\Delta_{\varepsilon}(\mu_{\theta}, \omega) = \sup_{x \in [-2+\varepsilon, 2-\varepsilon]} \left| \lim_{\delta \downarrow 0} \frac{1}{\pi} \int_{-2+\varepsilon}^{x} \Im \left(G_{\theta}(u + i\delta) - G_{\omega}(u + i\delta) \right) du \right|$$

• Apply Cauchy's integral theorem:

$$\Delta_{\varepsilon}(\mu_{\theta}, \omega) \leq \frac{1}{\pi} \int_{-2+\varepsilon}^{2-\varepsilon} |G_{\theta}(u+i) - G_{\omega}(u+i)| du$$

$$+ \sup_{x \in [-2+\varepsilon, 2-\varepsilon]} \frac{2}{\pi} \int_{a_n}^{1} |G_{\theta}(x+iv) - G_{\omega}(x+iv)| dv + I_n$$

with $a_n := (\log n)^2 n^{-1}$ and I_n given by

$$I_n := \sup_{x \in [-2+\varepsilon, 2-\varepsilon]} \frac{2}{\pi} \int_0^{a_n} |G_{\theta}(x+iv) - G_{\omega}(x+iv)| dv$$

• For sufficiently large n, we know:

$$|I_n| \lesssim \frac{a_n}{n^{1/4}} \lesssim \frac{1}{n}$$

It remains to derive and solve a cubic (not a quadratic!) functional equation for Z_1 . After that, we apply the results to

$$\int_{-2+\varepsilon}^{2-\varepsilon} |G_{\theta}(u+i) - G_{\omega}(u+i)| du$$

and

$$\sup_{x \in [-2+\varepsilon, 2-\varepsilon]} \int_{a_n}^1 |G_{\theta}(x+iv) - G_{\omega}(x+iv)| \, dv$$

leading to the desired rate of convergence.

Overview

Weighted sums in classical probability

Weighted sums in free probability

Outline of the proofs

Berry-Esseen type estimates in the free central limit theorem

Berry-Esseen type estimates in the free central limit theorem

Our approach generalizes to free additive convolutions of not necessarily equally distributed compactly supported probability measures.

Theorem 5 (N., 2023)

Let μ_1,\ldots,μ_n be probability measures on $\mathbb R$ with $\mathrm{supp}\,\mu_i\subset[-M_i,M_i]$ for $M_i>0$. Assume that each μ_i has mean zero and variance $\sigma_i^2\in(0,\infty)$. Define

$$B_n := \left(\sum_{i=1}^n \sigma_i^2\right)^{1/2}, \qquad L_n := \frac{\sum_{i=1}^n M_i^3}{B_n^3}$$

and let $\mu_{\boxplus n}:=D_{B_n^{-1}}\mu_1\boxplus\cdots\boxplus D_{B_n^{-1}}\mu_n.$ Then, we have

$$\Delta(\mu_{\boxplus n}, \omega) \le cL_n, \qquad c > 0.$$

Note: This improves upon the square root in the known rate $\left(B_n^{-3} \sum_{i=1}^n \beta_3(\mu_i)\right)^{1/2} \text{ at the cost of an increase in the nominator.}$

Thank you for your attention!

References

- [1] Bai, Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part I. Wigner Matrices.
- [2] Banna, Mai, Berry-Esseen bounds for the multivariate \mathcal{B} -free CLT and operator-valued matrices.
- [3] Bao, Erdős, Schnelli, Local stability of the free additive convolution.
- [4] Biane, Processes with free increments.
- [5] Bobkov, Edgeworth Corrections in Randomized Central Limit Theorems.
- [6] Bobkov, Chistyakov, Götze, Poincaré inequalities and normal approximation for weighted sums.
- [7] Chistyakov, Götze, Asymptotic expansions in the CLT in free probability.
- [8] Chistyakov, Götze, Limit theorems in free probability theory I.
- [9] Götze, Tikhomirov, Rate of convergence to the semi-circular law.
- [10] Kargin, Berry-Esseen for Free Random Variables.
- [11] Kargin, On superconvergence of sums of free random variables.
- [12] Klartag, Sodin, Variations on the Berry-Esseen theorem.
- [13] Mai, Speicher, Operator-Valued and Multivariate Free Berry-Esseen Theorems.
- [14] Neufeld, Weighted Sums and Berry-Esseen type estimates in Free Probability Theory.
- [15] Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory.