Infinitesimal Operators

Jamie Mingo (Queen's University at Kingston)
(joint work with Pei-Lun Tseng, NYU Abu Dhabi)

POAS, Sept. 25 2023, Berkeley

limit distributions of random matrices

- $\left\{A_{N}\right\}_{N}$ is an ensemble of random matrices, $\mathrm{Tr}=$ un-normalized trace and $\operatorname{tr}=N^{-1} \mathrm{Tr}=$ normalized trace
- for a polynomial $p, \mu_{N}(p)=\mathrm{E}\left(\operatorname{tr}\left(p\left(A_{N}\right)\right)\right)$
- if μ_{N} converges pointwise on polynomials to μ, we say the ensemble $\left\{A_{N}\right\}_{N}$ has the limit distribution μ
- let $\mu_{N}^{\prime}=N\left(\mu_{N}-\mu\right), \mu_{N}^{\prime}$ is linear on polynomials and $\mu_{N}^{\prime}(1)=0$
- we say the pair $\left(\mu_{N}, \mu_{N}^{\prime}\right)$ is an infinitesimal law on $\mathcal{A}=\mathbf{C}[t]$ (polynomials in t) and the triple $\left(\mathcal{A}, \mu_{N}, \mu_{N}^{\prime}\right)$ is an (infinitesimal probability space)
- if μ_{N}^{\prime} converges pointwise to μ^{\prime} we have that $\left(\mu, \mu^{\prime}\right)$ is an infinitesimal law on \mathcal{A} and we say that $\left\{A_{N}\right\}_{N}$ has the infinitesimal limit distribution (μ, μ^{\prime})

examples (Johansson (1998), Dumitriu \& Edelman (2006))

- $G=\left(g_{i j}\right)_{i, j=1}^{N}$ with $\left\{g_{i j}\right\}_{i, j}$ real independent $\mathcal{N}(0,1)$
- $A_{N}=\frac{1}{\sqrt{2 N}}\left(G+G^{t}\right)=N \times N$ Gaussian Orthogonal Ensemble
- it has the limit infinitesimal distribution $\left(\mu, \mu^{\prime}\right)$ where μ is Wigner's semi-circle law and $\mu^{\prime}=\frac{1}{2}\left(v_{1}-v_{2}\right)$ is a signed measure with $v_{1}=\frac{1}{2}\left(\delta_{-2}+\delta_{2}\right)$ (Dirac masses at ± 2) and $d v_{2}(t)=\frac{1}{\pi} \frac{1}{\sqrt{4-t^{2}}}(\operatorname{arcsine}$ law on $[-2,2])$
- $G=\left(g_{i j}\right)_{\substack{i=1, \ldots, N \\ j=1, \ldots, M}}(N \times M),\left\{g_{i j}\right\}_{i, j}$ real independent $\mathcal{N}(0,1)$
- $W_{N}=\frac{1}{N} G G^{t}, N \times N$ real Wishart matrix
- if $\frac{M}{N} \longrightarrow c$ then $\left\{W_{N}\right\}_{N}$ has the limit distribution $\mu=$ the Marchenko-Pastur Law with parameter c
- if $N\left(\frac{M}{N}-c\right) \longrightarrow c^{\prime}$ then $\left\{W_{N}\right\}_{N}$ has the infinitesimal limit distribution $\mu^{\prime}=$ with parameter c^{\prime}

Infinitesimal Marchenko-Pastur (details)

- $\mu_{c}($ where $M / N \rightarrow c>0)$
- $a=(1-\sqrt{c})^{2}$, and $b=(1+\sqrt{2})^{2}$
- $d \mu_{c}(t)=(1-c) \delta_{0}+\frac{\sqrt{(b-t)(t-a)}}{2 \pi t} d t$
- $\mu_{c}^{\prime}=\frac{1}{2}\left(\nu_{1}-v_{2}\right)-c^{\prime}\left(\rho_{1}-\rho_{2}\right)$
- $v_{1}=\frac{1}{2}\left(\delta_{a}+\delta_{b}\right), d v_{2}(t)=\frac{d t}{\pi \sqrt{(b-t)(t-a)}}$ on $[a, b]$
- $\rho_{1}=\delta_{0}$ and $\rho_{2}=\frac{t+1-c}{2 \pi t \sqrt{(b-t)(t-a)}}$ on $[a, b]$
- ρ_{1} is absent when $c>1$

Finite Rank Ex. (Shlyakhtenko (2018), Collins, Hasebe, Sakuma (2018))

- A a fixed finite matrix padded with 0 to $N \times N$.
- $\mu=\delta_{0}$ (because we normalize the trace)
- $\mu^{\prime}(p)=\operatorname{Tr}(p(A)-p(0))$
- if A is $k \times k$ and normal, then $\mu^{\prime}=\delta_{\lambda_{1}}+\delta_{\lambda_{2}}+\cdots+\delta_{\lambda_{k}}-k \delta_{0}$ where the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{k}$

a figure from Shlyakhtenko (2018) showing a perturbed GUE with a spike of mass $1 / 100$ at 0.4 , orange shows predicted eigenvalue density using infinitesimal freeness

Infinitesimal Freeness: Belinschi \& Shylakhtenko (2012), Fevrier, Nica (2010), Tseng (2019)

- $\varphi^{\prime}: \mathcal{A} \xrightarrow{\text { linear }} \mathbf{C}, \varphi^{\prime}(1)=0,\left(\mathcal{A}, \varphi, \varphi^{\prime}\right)$ infinitesimal probability space
- $\tilde{\mathcal{A}}=\left\{\left.\left[\begin{array}{ll}a & a^{\prime} \\ 0 & a\end{array}\right] \right\rvert\, a, a^{\prime} \in \mathcal{A}\right\}, \quad \widetilde{\mathbf{C}}=\left\{\left.\left[\begin{array}{cc}\alpha & \alpha^{\prime} \\ 0 & \alpha\end{array}\right] \right\rvert\, \alpha, \alpha^{\prime} \in \mathbf{C}\right\}$, $\tilde{\varphi}=\left[\begin{array}{cc}\varphi & \varphi^{\prime} \\ 0 & \varphi\end{array}\right], \quad \tilde{\varphi}: \tilde{\mathcal{A}} \rightarrow \widetilde{\mathbf{C}}$
- $(\tilde{\mathcal{A}}, \tilde{\varphi})$ is an algebraic probability space
- $\mathcal{A}_{1}, \ldots, \mathcal{A}_{s} \subseteq \mathcal{A}$ are infinitesimally free if $\tilde{\mathcal{A}}_{1}, \ldots, \tilde{\mathcal{A}}_{s}$ are $\tilde{\varphi}$-free
- $\mathcal{A}_{1}, \ldots, \mathcal{A}_{s} \subseteq \mathcal{A}$ infinitesimally free $\stackrel{\text { TMA }}{\Leftrightarrow} \mathcal{A}_{1}, \ldots, \mathcal{A}_{s} \varphi$-free and whenever:
- $a_{1}, \ldots, a_{n} \in \mathcal{A}$ with $\varphi\left(a_{i}\right)=0,1 \leqslant i \leqslant n$, and
- $a_{i} \in \mathcal{A}_{j_{i}}$ with $j_{1} \neq j_{2} \neq \cdots \neq j_{n}$;
we have $\varphi^{\prime}\left(a_{1} \cdots a_{n}\right)=\varphi\left(a_{1} \cdots \varphi^{\prime}\left(a_{\frac{n+1}{2}}\right) \cdots a_{n}\right)$ for n odd and 0 otherwise

asymptotic freeness

- $\left\{A_{N}\right\}_{N}$ and $\left\{B_{N}\right\}_{N}$ two random matrix ensembles with joint distribution $\mu_{N}: \mathbf{C}\langle s, t\rangle \rightarrow \mathbf{C}$ are asymptotically free if μ_{N} converges pointwise to a distribution for which $\mathbf{C}\langle s\rangle$ and $\mathbf{C}\langle t\rangle$ are free
- $\left\{A_{N}\right\}_{N}$ and $\left\{B_{N}\right\}_{N}$ two random matrix ensembles with joint distribution $\mu_{N}: \mathbf{C}\langle s, t\rangle \rightarrow \mathbf{C}$ are asymptotically infinitesimally free if ($\mu_{N}, \mu_{N}^{\prime}$) converges pointwise to a distribution for which $\mathbf{C}\langle s\rangle$ and $\mathbf{C}\langle t\rangle$ are infinitesimally free
- independent GOE random matrices are asymptotically free but not asymptotically infinitesimally free (M. 2019)
- a unitarily invariant ensemble and a fixed finite rank matrix are asymptotically infinitesimally free (Shlyakhtenko (2018), Collins, Hasebe, Sakuma, (2018))

infinitesimal operators

- $\left(\mathcal{A}, \varphi, \varphi^{\prime}\right)$ is an infinitesimal probability space
- $a \in \mathcal{A}$ is infinitesimal if $\varphi\left(a^{k}\right)=0$ for $k=1,2,3, \ldots$
- the infinitesimal cumulants of infinitesimal operators are particularly simple
- in a C ${ }^{*}$-probability space a self-adjoint infinitesimal will have spectral measure δ_{0} (Dirac mass at 0) with respect to φ
- if a and b are infinitesimally free and a is infinitesimal then $a b$ is infinitesimal
- if a and b are infinitesimally free and both a and b are infinitesimal then $a+b$ is infinitesimal

free cumulants (Speicher)

$$
\begin{aligned}
& \kappa_{1}\left(x_{1}\right)=\varphi\left(x_{1}\right), \\
& G(z)=\varphi\left((z-X)^{-1}\right) \\
& \kappa_{2}\left(x_{1}, x_{2}\right)=\varphi\left(x_{1} x_{2}\right)-\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \\
& R(z)=G^{\langle-1\rangle}(x)-z^{-1} \\
& \kappa_{\mid} \sqcup\left(x_{1}, x_{2}, x_{3}\right)=\kappa_{1}\left(x_{1}\right) \kappa_{2}\left(x_{2}, x_{3}\right) \quad R(z)=\kappa_{1}+\kappa_{2} z+\kappa_{3} z^{2}+\cdots \\
& \varphi\left(x_{1} x_{2} x_{3}\right)=\mathrm{k} \sqcup+\mathrm{k}_{1} \sqcup+\mathrm{k}_{\sqcup}+\mathrm{k}_{\sqcup} \mathrm{k}_{\mathrm{l}}+\mathrm{k}_{1} \text { ।। } \\
& \varphi\left(x_{1} x_{2} x_{3} x_{4}\right)=\mathrm{k} \sqcup \sqcup+\mathrm{k} \mid \sqcup+\mathrm{k} \downarrow \sqcup+\mathrm{k} \sqcup \downarrow+\mathrm{k} \sqcup \text { । } \\
& +\kappa \sqcup \sqcup+\kappa \sqcup \sqcup
\end{aligned}
$$

$$
\begin{aligned}
& +\kappa \| । । \\
& \varphi\left(x_{1} \cdots x_{n}\right)=\sum_{\pi \in N C(n)} \kappa_{\pi}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

where $N C(n)$ is the set of non-crossing partitions of $[n]=\{1,2, \ldots, n\}$

infinitesimal cumulants, Fevrier \& Nica (2010)

- $\varphi\left(x_{1} \cdots x_{n}\right)=\sum \kappa_{\pi}\left(x_{1}, \ldots, x_{n}\right)$
$\pi \in N C(n)$
$\varphi^{\prime}\left(x_{1} \cdots x_{n}\right)=\sum_{\pi \in N C(n)} \partial \kappa_{\pi}\left(x_{1}, \ldots, x_{n}\right)$
- where $\partial \kappa_{\pi}\left(x_{1} \cdots x_{n}\right)$

$$
=\sum_{V \in \pi} \kappa_{|V|}^{\prime}\left(x_{1}, \ldots, x_{n} \mid V\right) \prod_{W \neq V} \kappa_{|W|}\left(x_{1}, \ldots, x_{n} \mid W\right)
$$

- where $\partial \kappa_{\pi}$ is defined by the Leibniz rule, for example when $\pi=\{(1,3),(2),(4)\}$

$$
\begin{aligned}
& \partial \kappa_{\pi}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\partial\left(\kappa_{2}\left(x_{1}, x_{3}\right) \kappa_{1}\left(x_{2}\right) \kappa_{1}\left(x_{4}\right)\right) \\
&=\kappa_{2}^{\prime}\left(x_{1}, x_{3}\right) \kappa_{1}\left(x_{2}\right) \kappa_{1}\left(x_{4}\right)+ \kappa_{2}\left(x_{1}, x_{3}\right) \kappa_{1}^{\prime}\left(x_{2}\right) \kappa_{1}\left(x_{4}\right) \\
&+\kappa_{2}\left(x_{1}, x_{3}\right) \kappa_{1}\left(x_{2}\right) \kappa_{1}^{\prime}\left(x_{4}\right)
\end{aligned}
$$

higher orders

Fix $m \geqslant 1$. For $0 \leqslant k \leqslant m-1$, let $\left\{\kappa_{n}^{(k)}\right\}_{n \geqslant 1}$ be an infinitesimal cumulant sequence of order $m-1$. We are following the notation of calculus and writing $\kappa_{n}^{(1)}$ for κ_{n}^{\prime} and $\kappa_{n}^{(2)}$ for $\kappa_{n}^{\prime \prime}$. In this notation $\kappa_{n}^{(0)}=\kappa_{n}$. We define a derivation, ∂, by setting $\partial \kappa_{n}^{(k)}=\kappa_{n}^{(k+1)}$ for all k and n and extend to sums by linearity and to products by the Leibnitz rule. Then by the Leibnitz rule

Given a partition $\pi \in \mathcal{P}(n)$ with blocks $\left\{V_{1}, \ldots, V_{k}\right\}$ of size l_{1}, \ldots, k_{k} respectively, we set, as usual, $\kappa_{\pi}=\mathrm{k}_{l_{1}} \cdots \mathrm{k}_{l_{k}}$. By the Leibnitz rule we have

$$
\partial \kappa_{\pi}=\kappa_{l_{1}}^{\prime} \kappa_{l_{2}} \cdots \kappa_{l_{k}}+\kappa_{l_{1}} \kappa_{l_{2}}^{\prime} \cdots \kappa_{l_{k}}+\cdots+\kappa_{l_{1}} \kappa_{l_{2}} \cdots \kappa_{l_{k}}^{\prime} .
$$

Let us define a $m \times m$ upper triangular matrix K_{n} by

$$
K_{n}=\left[\begin{array}{cccc}
\frac{\kappa_{n}^{(0)}}{0!} & \frac{\kappa_{n}^{(1)}}{1!} & \cdots & \frac{\kappa_{n}^{(m-1)}}{(m-1)!} \\
0 & \frac{\kappa_{n}^{(0)}}{0!} & \cdots & \frac{\kappa_{n}^{(m-2)}}{(m-2)!} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{\kappa_{n}^{(0)}}{0!}
\end{array}\right]=\left[\begin{array}{cccc}
\kappa_{n} & \frac{\partial^{1} \kappa_{n}}{1!} & \cdots & \frac{\partial^{m-1} \kappa_{n}}{(m-1)!} \\
0 & \kappa_{n} & \cdots & \frac{\partial^{m-2} \kappa_{n}}{(m-2)!} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \kappa_{n}
\end{array}\right]
$$

We extend this to partitions in the usual way and set $K_{\pi}=K_{l_{1}} \cdots K_{l_{k}}$. Note that the matrices $K_{l_{1}}, \ldots, K_{l_{k}}$ commute so the order of the blocks does not matter, and thus the extension is well defined. Then by ($*$) we have
(LEMMA)

$$
K_{\pi}=\left[\begin{array}{cccc}
\kappa_{\pi} & \frac{\partial^{1} \kappa_{\pi}}{1!} & \cdots & \frac{\partial^{m-1} \kappa_{\pi}}{(m-1)!} \\
0 & \mathrm{~K}_{\pi} & \cdots & \frac{\partial^{m-2} \kappa_{\pi}}{(m-2)!} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \kappa_{\pi}
\end{array}\right]
$$

For $0 \leqslant k \leqslant m-1$, let $\left\{m_{n}^{(k)}\right\}_{n \geqslant 1}$ be an infinitesimal moment sequence of order $m-1$, using the same convention as with cumulants. We let

$$
\left.\begin{array}{c}
M_{n}=\left[\begin{array}{cccc}
\frac{m_{n}^{(0)}}{0!} & \frac{m_{n}^{(1)}}{1!} & \cdots & \frac{m_{n}^{(m-1)}}{(m-1)!} \\
0 & \frac{m_{n}^{(0)}}{0!} & \cdots & \frac{m_{n}^{(m-2)}}{(m-2)!} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{m_{n}^{(0)}}{0!}
\end{array}\right]=\left[\begin{array}{cccc}
m_{n} & \frac{\partial^{1} m_{n}}{1!} & \cdots & \frac{\partial^{m-1} m_{n}}{(m-1)!} \\
0 & m_{n} & \cdots & \frac{\partial^{m-2} m_{n}}{(m-2)!} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & m_{n}
\end{array}\right] . \\
M_{\pi}=\left[\begin{array}{cccc}
m_{\pi} & \frac{\partial^{1} m_{\pi}}{1!} & \cdots & \frac{\partial^{m-1} m_{\pi}}{(m-1)!} \\
0 & m_{\pi} & \cdots & \frac{\partial^{m-2} m_{\pi}}{(m-2)!} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & m_{\pi}
\end{array}\right] \text { and } M_{n}=\sum_{\pi \in N C}(n)
\end{array} K_{\pi}\right]
$$

For $z_{0}, \ldots, z_{m-1} \in \mathbf{C}$, let

$$
Z=\left[\begin{array}{cccc}
z_{0} & z_{1} & \cdots & z_{m-1} \\
0 & z_{0} & \cdots & z_{m-2} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & z_{0}
\end{array}\right]
$$

$G(Z)=\sum_{n=0}^{\infty} M_{n} Z^{-(n+1)}$ and $R(Z)=\sum_{n=1}^{\infty} K_{n} Z^{n-1}$.
Then

$$
G(Z)^{-1}+R(G(Z))=Z=G\left(Z^{-1}+R(Z)\right)
$$

- when $m=2$ we have $Z=\left[\begin{array}{cc}z_{0} & z_{1} \\ 0 & z_{0}\end{array}\right]$
- $G(Z)=\left[\begin{array}{cc}G\left(z_{0}\right) & G^{\prime}\left(z_{0}\right) z_{1}+g\left(z_{0}\right) \\ 0 & G\left(z_{0}\right)\end{array}\right]$ where $g\left(z_{0}\right)=\sum_{n=1}^{\infty} \frac{m_{n}^{\prime}}{z_{0}^{n+1}}$
- $R(Z)=\left[\begin{array}{cc}R\left(z_{0}\right) & R^{\prime}\left(z_{0}\right) z_{1}+r\left(z_{0}\right) \\ 0 & R\left(z_{0}\right)\end{array}\right]$ where $r\left(z_{0}\right)=\sum_{n=1}^{\infty} \kappa_{n}^{\prime} z_{0}^{n-1}$
- $G(Z)^{-1}+R(G(Z))=Z \Rightarrow g(z)=-r(G(z)) G^{\prime}(z)$
- if $\varphi\left(x^{n}\right)=0$ for $n \geqslant 1$ (i.e. x is infinitesimal) then $G(z)=z^{-1}$ and

$$
z^{-1} g\left(z^{-1}\right)=z r(z)
$$

- in particular $m_{n}^{\prime}=\kappa_{n}^{\prime}$ for $n \geqslant 1$

commutators and anti-commutators

- (\mathcal{A}, φ) algebraic probability space, $x_{1}, x_{2} \in \mathcal{A}$ freely independent
- $q=i\left(x_{1} x_{2}-x_{2} x_{1}\right)$ is the commutator of x_{1} and x_{2}
- $p=x_{1} x_{2}+x_{2} x_{1}$ the anti-commutator of x_{1} and x_{2}
- Nica \& Speicher found the distribution of p and q in terms of x_{1} and x_{2}, many subsequent investigations: Daniel Perales and Jacob Campbell
- Collins, Hasebe, Sakuma (2018) considered the spectrum of $P_{N}=B_{N} A_{N}+A_{N} B_{N}$ and $Q_{N}=i\left(B_{N} A_{N}-A_{N} B_{N}\right)$ with B_{N} a unitarily invariant ensemble and A_{N} trace class operators, $P_{N} \xrightarrow{\mathcal{D}} p$ and $Q_{N} \xrightarrow{\mathcal{D}} q$
- generalization: $\left(\mathcal{A}, \varphi, \varphi^{\prime}\right)$ infinitesimal probability space, $x_{1}, x_{2} \in \mathcal{A}$ infinitesimally freely independent, x_{2} infinitesimal
- find the distribution of p and q

main results (M. \& Tseng)

- $\left(\mathcal{A}, \varphi, \varphi^{\prime}\right)$ infinitesimal probability space, $x_{1}, x_{2} \in \mathcal{A}$ infinitesimally freely independent, x_{2} infinitesimal
- $q=i\left(x_{1} x_{2}-x_{2} x_{1}\right)$

THM. $\kappa_{n}^{\prime}(q)=\kappa_{n}^{\prime}\left(\omega x_{2}\right)+\kappa_{n}^{\prime}\left(-\omega x_{2}\right)$ for n even and 0 otherwise, where $\omega=\sqrt{\mathrm{K}_{2}\left(x_{1}\right)}$
тнм. $q \stackrel{\mathcal{D}}{\sim} \omega x_{2} \boxplus_{B}-\omega x_{2}$ (this means that q has the same distribution as the free additive infinitesimal convolution of two operators each of which is a scaled version of x_{2})

- $p=x_{1} x_{2}+x_{2} x_{1}$

тнм. $\kappa_{n}^{\prime}(p)=\kappa_{n}^{\prime}\left(\alpha x_{2}\right)+\kappa_{n}^{\prime}\left(\beta x_{2}\right)$ where $\alpha=\varphi\left(x_{1}\right)+\sqrt{\varphi\left(x_{1}^{2}\right)}$ and $\beta=\varphi\left(x_{1}\right)-\sqrt{\varphi\left(x_{1}^{2}\right)}$ and $\pm \sqrt{\varphi\left(x_{1}^{2}\right)}$ are the two square roots of $\varphi\left(x_{1}^{2}\right)$
тнм. $p \stackrel{\mathcal{D}}{\sim} \alpha x_{2} \boxplus_{B} \beta x_{2}$ (this means that p has the same distribution as the free additive infinitesimal convolution of two operators each of which is a scaled version of x_{2})

moment calculations

$$
\varphi^{\prime}\left(x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i_{4}} x_{i_{5}} x_{i_{6}} x_{i_{7}} x_{i_{8}}\right)=\sum_{\pi \in N C(8)} \partial \kappa_{\pi}\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, x_{i_{4}}, x_{i_{5}}, x_{i_{6}}, x_{i_{7}}, x_{i_{8}}\right)
$$

- for each l the pair $\left\{x_{2 l-1}, x_{2 l}\right\}$ contains one x_{1} and one x_{2}
- by vanishing of mixed cumulants, no block can connect an x_{1} to an x_{2}
- by infinitesimality of x_{2}, only one x_{2}-block

$$
\begin{gathered}
x_{i_{1}} x_{i_{2}} \\
x_{i_{3}} x_{i_{4}} x_{i_{5}} x_{i_{6}} x_{i_{7}} x_{i_{8}} \\
\pi=\{\{1,8\},\{2,3,6,7\},\{4,5\}\}, \\
i_{1}=i_{4}=i_{5}=i_{8}=1, \quad i_{2}=i_{3}=i_{6}=i_{7}=2 \\
\partial \kappa_{\pi}\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, x_{i_{4}}, x_{i_{5}}, x_{i_{6}}, x_{i_{7}}=\kappa_{2}\left(x_{1}\right)^{2} \kappa_{4}^{\prime}\left(x_{2}\right)\right.
\end{gathered}
$$

operator valued cumulants

- $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in\left(\mathcal{A}, \varphi, \varphi^{\prime}\right)$
- $\left\{a_{1}, \ldots, a_{n}\right\}$ infinitesimally free from $\left\{b_{1}, \ldots, b_{n}\right\}$
- a_{1}, \ldots, a_{n} infinitesimal operators
- $x=b_{1} a_{1} b_{1}^{*}+\cdots+b_{n} a_{n} b_{n}^{*}$
- $A=\left[\begin{array}{ccc}a_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{n}\end{array}\right], B=\left(\beta_{i j}\right)_{i, j,=1, \ldots, n}$ where $\beta_{i j}=\varphi\left(b_{i} b_{j}^{*}\right)$
- $X=\sqrt{B} A \sqrt{B}$

тнм. $\varphi^{\prime}\left(x^{m}\right)=\operatorname{Tr}\left(K_{m}^{\prime}(A B, A B, \ldots, A B)\right)=\operatorname{Tr}\left(K_{m}^{\prime}(X, X, \ldots, X)\right)=$ $\operatorname{Tr} \otimes \varphi^{\prime}\left(X^{m}\right)$

- K_{n}^{\prime} is the $n^{\text {th }}$ infinitesimal cumulant with values in $M_{n}(\mathbf{C})$

an infinitesimal manifesto

- Borot, Charbonnier, Garcia-Failde, Leid, and Shadrin (2022) found a connection between topological recursion and higher order freeness
- in this model infinitesimal freeness corresponds to genus $\frac{1}{2}$ (i.e. planar but not orientable)
- independent GUE random matrices are asymptotically free (Voiculescu, 1991) and have trivial infinitesimal laws, and thus are asymptotically infinitesimally free
- Fevrier (2012) defined higher order freeness (think 3×3 matrices), but independent GUEs are not asymptotically second order infinitesimally free (Harer, Zagier 1986)
- independent GOE random matrices are not asymptotically infinitesimally free, but there is a universal rule (M. 2019)

a connection to Boolean independence

- $\left(\mathcal{A}, \varphi, \varphi^{\prime}\right)$ an infinitesimal probability space, $j \in \mathcal{A}$ is infinitesimal and idempotent, and $\varphi^{\prime}(j) \neq 0$
- $\mathcal{A}_{1}, \ldots, \mathcal{A}_{s} \subseteq \mathcal{A}$, unital subalgebras with $\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{s}\right\}$ infinitesimally free from j
- define $\psi: \mathcal{A} \rightarrow \mathbf{C}$ by $\psi(a)=\varphi^{\prime}(a j) / \varphi^{\prime}(j)$.
- for $a \in \mathcal{A}_{i}$ we have $\varphi^{\prime}(a j)=\partial \kappa_{\pi}(a, j)$ with $\pi=\{\{1\},\{2\}\}$, so $\varphi^{\prime}(a j)=\varphi^{\prime}(a) \varphi(j)+\varphi(a) \varphi^{\prime}(j)=\varphi(a) \varphi^{\prime}(j)$. Thus on \mathcal{A}_{i} we have $\psi=\varphi$
- $\mathcal{J}\left(\mathcal{A}_{k}\right)=\operatorname{alg}\left\{j^{\left(\epsilon_{1}\right)} a_{1} j^{\left(\epsilon_{2}\right)} \ldots j^{\left(\epsilon_{n-1}\right)} a_{n-1} j^{\left(\epsilon_{n}\right)} \mid a_{1}, \ldots a_{n-1} \in \mathcal{A}_{k}\right\}$ where $j^{(1)}=1-j$ and $j^{(-1)}=j$
- $\mathcal{J}_{a}\left(\mathcal{A}_{k}\right)$ is the sub-algebra generated by the same words as above but we require that the ϵ 's alternate in sign
- If $\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{s}\right\}$ infinitesimally free from j, then the subalgebras $j \mathcal{J}\left(\mathcal{A}_{1}\right) j, \ldots, j \mathcal{J}\left(\mathcal{A}_{s}\right) j$ are Boolean independent
- If $\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{s}\right\}$ infinitesimally free from j, and φ-free amongst themselves, then then the subalgebras $\mathcal{J}_{a}\left(\mathcal{A}_{1}\right), \ldots$, $\mathcal{J}_{a}\left(\mathcal{A}_{s}\right)$ are Boolean independent

key relation

- $\operatorname{recall} j^{(1)}=1-j$ and $j^{(-1)}=j$
- given $\epsilon_{2}, \ldots, \epsilon_{k} \in\{-1,1\}$ we let $\sigma_{\epsilon} \in \mathcal{P}(n)$ be the interval partition (i.e. all blocks are intervals) where we start a new block at l whenever $\epsilon_{l}=-1$, here we assume that $k<n$.
- For example, suppose $n=9$ and $k=6$ and
$\epsilon_{2}=-1, \epsilon_{3}=1, \epsilon_{4}=1, \epsilon_{5}=-1, \epsilon_{6}=-1$; then $\sigma_{\epsilon}=\{(1),(2,3,4),(5),(6,7,8,9)\}$.
- Given two strings $\left(\epsilon_{2}, \ldots, \epsilon_{n}\right)$ and $\left(\eta_{2}, \eta_{3}, \ldots, \eta_{n}\right)$ in $\{-1,1\}^{n-1}$, we say that $\epsilon \leqslant \eta$ if $\epsilon_{k} \leqslant \eta_{k}$ for $k=2, \ldots, n$. Then $\epsilon \leqslant \eta \Leftrightarrow \sigma_{\epsilon} \leqslant \sigma_{\eta}$. In addition $\sigma_{-\epsilon}=\sigma_{B\left(\sigma_{\epsilon}\right)}$ where $B(\sigma)$ is the Boolean complement of σ, namely the smallest $\pi \in I(n)$ such that $\pi \vee \sigma=1_{n}$.
$\downarrow \psi\left(j a_{1} j^{\left(\epsilon_{2}\right)} \ldots j^{\left(\epsilon_{n}\right)} a_{n} j\right)=\psi\left(j a_{1} j^{\left(\epsilon_{2}\right)} \ldots j^{\left(\epsilon_{n}\right)} a_{n}\right)=$ $\beta_{\sigma_{\epsilon}}\left(a_{1}, \ldots, a_{n}\right)$ where $\beta_{\sigma_{\epsilon}}$ is the Boolean cumulant corresponding to the interval partition σ_{ϵ}.

previous work I mentioned

- S. T. Belinschi and D. Shlyakhtenko. Free probability of type B: Analytic interpretation and applications. Amer. J. Math., 134:193-234, 2012.
- B. Collins, T. Hasebe, and N. Sakuma. Free probability for purely discrete eigenvalues of random matrices. J. Math. Soc. Japan, 70(3):1111-1150, 2018.
- S. T. Belinschi and D. Shlyakhtenko. Free probability of type B: Analytic interpretation and applications. Amer. J. Math., 134:193-234, 2012.
- M. Fevrier and A. Nica. Infinitesimal non-crossing cumulants and free probability of type B. J. Functional Analysis, 258(9):2983-3023, 2010.
- R. Lenczewski. Limit distributions of random matrices. Adv. in Math., 263:253-320, 2014.
- C. Male. Traffic distributions and independence: permutation invariant random matrices and the three notions of independence. Mem. Amer. Math. Soc., 1300, 2021.
- D. Perales. On the anti-commutator of two free random variables. arXiv, 2101:09444, (2021).
- D. Shlyakhtenko. Free probability of type B and asymptotics of finite rank perturbations of random matrices. Indiana Univ. Math. J., 67:971-991, 2018.
- P.-L. Tseng. A unified approach to infinitesimal freeness with amalgamation. Int. J. Math., (to appear), arXiv:1904.11646.

