
Riesz transforms on compact quantum
groups and strong solidity

Martijn Caspers – TU Delft
February 1, 2021 at Virtual Berkeley



Setup

Approximation
properties

Strong solidity

Gaussian
algebras

Quantum
groups
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Markov process: Probabilistic process in which the subsequent state solely
depends on the current state, and does not remember anything from the past.

Quantum probability:

Probability space⇒ von Neumann algebra with a trace.

State⇒ density operators (positive, trace 1).

Markov maps⇒ trace preserving normal unital completely positive (ucp)
maps (quantum channels).
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Basic definitions

Von Neumann algebra: ∗-subalgebra M of B(H) that is closed in the strong
topology.

M is called finite if there exists a normal tracial state τ on M.

Examples: πτ (A)
strong

of any GNS-representation of a UHF algebra with τ a trace.

Examples: VN(Γ) = {λw | w ∈ Γ}strong
with Γ group, λw ∈ B(`2(Γ)) with

λwδs = δws .

L2(M) = L2(M, τ) GNS-space with respect to τ . Completion of M with respect to

〈x , y〉 = τ(y∗x), x , y ∈ M.

Ωτ = 1M cyclic vector.

Φ : M → M is called completely positive if

idn ⊗ Φ : Mn(C)⊗M → Mn(C)⊗M

is positive for all n, i.e. maps positive elements to positive elements.
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Setup:

M = finite von Neumann algebra.

τ = normal faithful tracial state on M

Ωτ = cyclic vector for GNS-representation of M

A quantum Markov semi-group (Φt )t≥0 is a semi-group of normal unital
completely positive (ucp) maps on a von Neumann algebra M that is point-strongly
continuous.

They yield L2-maps by Kadison-Schwarz,

Φ
(2)
t : xΩτ 7→ Φt (x)Ωτ .

Unbounded generator ∆ :⊆ L2(M)→ L2(M) such that,

Φ
(2)
t (x) = exp(−t∆).

Example: VN(Fn) with Φt (λw ) exp(−t |w |)λw [Haagerup ’78/79].
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Approximation properties

Some approximation/rigidity properties of von Neumann algebras:

Property(T)

Haagerup property, (...)

Amenable⊗
λ∈Λ(M2(C), ρλ)
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Applications: amenability

Definition: A von Neumann algebra M is amenable if there is a net of normal
finite rank unital completely positive maps Φi : M → M such ∀x ∈ M we have
Φi (x)→ x strongly.

Theorem ( Cipriani-Sauvageot ’17, see also C 20)

M is amenable iff ∃ a quantum Markov semi-group with generator ∆ with complete
set of eigenvalues ∆k , k ∈ N (multiplicity allowed) such that

∆k >> log(k).

Example: Let α ∈ (0,∞). Then

λw 7→ e−t|w|αλw

is a QMS on VN(Fn) if and only if 0 < α ≤ 1 [see also Bozejko].
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Applications: Haagerup property

Definition: A finite von Neumann algebra M has Haagerup property if there is a
net of normal trace preserving unital completely positive maps Φi : M → M such
that Φ

(2)
i is compact and ∀ξ ∈ L2(M) we have ‖Φ(2)

i ξ − ξ‖ → 0.

Theorem (C-Skalski ’15, Jolissaint–Martin ’04)

M has Haagerup property iff ∃ a quantum Markov semi-group with generator ∆
with complete set of eigenvalues ∆k , k ∈ N (multiplicity allowed) such that

∆k →∞.

Example: VN(Fn) has Haagerup property, since

λw 7→ e−t|w|λw

is a QMS on VN(Fn) [Haagerup ’ 78/79].
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Crash course strong solidity

M is called strong solidity [Ozawa-Popa ’07] if for any diffuse amenable von
Neumann subalgebra B ⊆ M the normalizing algebra

{u ∈ M unitary | uBu∗ = B}′′

is again amenable.

Remark: In particular, strong solidity + non-amenability implies:

M 6' L∞(X) o Λ, M 6' M1 ⊗M2.
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Crash course strong solidity

References: Ozawa, Ioana, Popa, Vaes, Isono, Peterson, Chifan, Sinclair, Udrea,
...
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Gradients of quantum Markov semi-group

± Theorem (Cipriani-Sauvageot): ∃ is a derivation ∇ that is the square root of ∆

∆ generator of a quantum Markov semi-group on M with some extra technical
conditions omitted. There exists

A subspace Dom(∇) ⊆ Dom(∆) ⊆ L2(M) that is moreover a ∗-algebra,

An M-M-bimodule H∇,

A closable derivation ∇ : Dom(∇)→H∇,

such that ∇∗∇ = ∆.

Definition gradient bimodule H∇. Assume for simplicity a dense ∗-algebra
Dom(∇) ⊆ Dom(∆). Consider inner products on Dom(∇)⊗ Dom(∇) by

〈a⊗ b, c ⊗ d〉 = 〈Γ(a, c)b, d〉τ ,

with gradient

Γ(a, c) =
1
2

(c∗∆(a) + ∆(c)∗a−∆(c∗a)).

H∇ is the completion of Dom(∇)⊗ Dom(∇) modulo its degenerate part. Set,

x · (a⊗ b) = xa⊗ b − x ⊗ ab, (a⊗ b) · x = a⊗ bx ,

∇ : Dom(∇) 7→ H∇ :x 7→ x ⊗ 1.

Leibniz rule: ∇(xy) = x∇(y) +∇(x)y . Root: ∇∗∇ = ∆.

For quantum groups and central multipliers H∂ is also a M-M-bimodule.
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Non-commutative Riesz transforms

We now define
∇∆−

1
2 : L2(M)→H∇

called the Riesz transform.

The Riesz transform is isometric:

〈∇∆−
1
2 (x),∇∆−

1
2 (x)〉H∇ =〈∇∗∇∆−

1
2 (x),∆−

1
2 (x)〉L2(M)

=〈∆∆−
1
2 (x),∆−

1
2 (x)〉L2(M)

=〈x , x〉L2(M),

(for x in a suitable dense domain).
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Crash course Deformation-Rigidity theory

Definition: Akemann-Ostrand
A (finite) von Neumann algebra M has the Akemann-Ostrand property if there
exists a dense unital C∗-subalgebra A ⊆ M such that

1 A is locally reflexive.

2 There exists a ucp map

θ : A⊗min Aop → B(L2(M))

such that θ(a⊗ bop)− abop is compact for all a, b ∈ A.
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Crash course Deformation-Rigidity theory

Suppose that A ⊆ M is a locally reflexive C∗-subalgebra.

Proposition (C, Isono, Wasilewski)

Suppose that

1 H∇ is weakly contained in L2(M)⊗ L2(M).

2 (a⊗ bop) ◦ ∇∆−
1
2 = ∇∆−

1
2 ◦ πl (a)πr (bop) is compact ∀a, b ∈ A.

Then M satisfies the Akemann-Ostrand property.

Proof. θ(a⊗ bop) := (∇∆−
1
2 )∗(a⊗ bop) ∇∆−

1
2 will do.

Theorem (C-Isono-Wasilewski): Condition 2 is in most cases easy to check.
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1
2 = ∇∆−

1
2 ◦ πl (a)πr (bop) is compact ∀a, b ∈ A.

Then M satisfies the Akemann-Ostrand property.

If for all a, b ∈ A ⊆ M, t ≥ 0 the following map

Ψa,b
t : x 7→ Φt (∆(axb) + a∆(x)b − a∆(xb)−∆(ax)b)

extends to a bounded map L2(M)→ L2(M) that is moreover Hilbert-Schmidt for
t > 0, then we say that Φ is gradient-S2.

Proposition (C)

Gradient-S2 implies that H∇ is weakly contained in L2(M)⊗ L2(M) (Condition 1).
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Gaussian algebras

Fix H = Cn finite dimensional Hilbert space⇒ Set Fock space:

F = CΩ⊕ H ⊕ (H ⊗ H)⊕ (H ⊗ H ⊗ H)⊕ (H ⊗ H ⊗ H ⊗ H)⊕ . . .

Consider creation and annihilation operators:

a∗(ξ) :η1 ⊗ . . .⊗ ηn = ξ ⊗ η1 ⊗ . . .⊗ ηn,

a(ξ) :η1 ⊗ . . .⊗ ηn = 〈ξ, η1〉η2 ⊗ . . .⊗ ηn.

Voiculescu’s free Gaussian algebra: Γ(H) = {a(ξ) + a∗(ξ) | ξ ∈ H}′′.

Remark: Can q-symmetrize the inner product⇒ q-Gaussian algebras q ∈ [−1, 1]
(Bozejko-Speicher, 1993).

q = 1 bosonic.

q = −1 fermionic, harmonic oscillator.

q = 0 free, c.f. above.

[Bozejko-(Kümmerer)-Speicher].
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Example (continued): ξ1 ⊗ . . .⊗ ξn ∈ F in the Fock space. Then ∃
W (ξ1 ⊗ . . . ξn) ∈ Γ(H) such that

W (ξ1 ⊗ . . .⊗ ξn)Ω = ξ1 ⊗ . . .⊗ ξn.

Note: this is quantization.

The Fock space semi-group

Φ
(2)
t : F → F : ξ1 ⊗ . . . ξn 7→ e−tnξ1 ⊗ . . .⊗ ξn.

lifts to the algebra level

Φt : Γ(H)→ Γ(H) : W (ξ1 ⊗ . . .⊗ ξn) 7→ e−tnW (ξ1 ⊗ . . .⊗ ξn).

Note: this is second quantization.

(Φt )t≥0 is a quantum Markov semi-group (Ornstein-Uhlenbeck semi-group).
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Theorem (C-Isono-Wasilewski)

(Φt )t≥0 is immediately gradient-S2 if

|q| ≤ dim(H)−1/2,

and consequently Γq(H) has the Akemann-Ostrand property.

Theorem (Shlyakhtenko)

Γq(H) has the Akemann-Ostrand property for |q| <
√

2− 1 and H finite
dimensional.

Theorem (Avsec)

Γq(H) is strongly solid for all q ∈ (−1, 1) and H finite dimensional.

Open questions:

Strong solidity with H infinite dimensional.

Akemann-Ostrand property beyond the range
|q| ≤ max(

√
2− 1, dim(H)1/2).



Setup

Approximation
properties

Strong solidity

Gaussian
algebras

Quantum
groups

Quantum groups

A compact quantum group is a pair G := (A,∆A) with A a unital C∗-algebra and
∆A : A→ A⊗ A a comultiplication such that

(∆A ⊗ id)∆A = (id⊗∆A)∆A,

and such that
∆A(A)(A⊗ 1) and ∆A(A)(1⊗ A),

are dense in A⊗ A.

Free orthogonal quantum group O+
N is generated by a matrix u = (uij )ij with the

relations that u is unitary and u = u. Compultiplication:

∆O+
N

(uij ) =
n∑

k=1

uik ⊗ ukj .
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Theorem (C)

Let G = (A,∆A) be a quantum group with tracial Haar state τ that can be
obtained from O+

N (equivalently SUq(2)) through (repeated) applications of:

Taking free products;

Taking any monoidally equivalent compact quantum group;

Taking a dual quantum subgroup;

Taking a free wreath product with S+
N [Lemeux-Tarrago];

Taking a tensor product with a finite (quantum) group.

Then L∞(G) = πτ (G)′′(A) admits a quantum Markov semi-group that is
gradient-S2.

Consequently (using [de Commer-Freslon-Yamshita] for CCAP + [Isono,
Popa-Vaes]) it is strongly solid.

All non-crossing (non-colored) partition/easy quantum groups clasified by
Banica-Speicher and Weber.

Hyperoctahedral series of quantum groups.
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