Riesz transforms on compact quantum groups and strong solidity

Martijn Caspers – TU Delft February 1, 2021 at Virtual Berkeley

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups

Markov process: Probabilistic process in which the subsequent state solely depends on the current state, and does not remember anything from the past.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Setup

Approximatio properties

Strong solidity

Gaussian algebras

Quantum groups

Markov process: Probabilistic process in which the subsequent state solely depends on the current state, and does not remember anything from the past.

Quantum probability:

- **Probability space** \Rightarrow von Neumann algebra with a trace.
- **State** \Rightarrow density operators (positive, trace 1).
- Markov maps ⇒ trace preserving normal unital completely positive (ucp) maps (quantum channels).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Von Neumann algebra: *-subalgebra M of B(H) that is closed in the strong topology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

M is called finite if there exists a normal tracial state τ on *M*.

Setup

Approximatio properties

Strong solidity

Gaussian algebras

Von Neumann algebra: *-subalgebra M of B(H) that is closed in the strong topology.

Setup

Approximatio properties

Strong solidity

Gaussian algebras

Quantum groups

M is called finite if there exists a normal tracial state τ on *M*.

Examples: $\overline{\pi_{\tau}(A)}^{\text{strong}}$ of any GNS-representation of a UHF algebra with τ a trace.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples: $VN(\Gamma) = \overline{\{\lambda_w \mid w \in \Gamma\}}^{\text{strong}}$ with Γ group, $\lambda_w \in B(\ell_2(\Gamma))$ with $\lambda_w \delta_s = \delta_{ws}$.

Von Neumann algebra: *-subalgebra M of B(H) that is closed in the strong topology.

Setup

Approximatio properties

Strong solidity

Gaussian algebras

Quantum groups

M is called finite if there exists a normal tracial state τ on *M*.

Examples: $\overline{\pi_{\tau}(A)}^{\text{strong}}$ of any GNS-representation of a UHF algebra with τ a trace.

Examples: $VN(\Gamma) = \overline{\{\lambda_w \mid w \in \Gamma\}}^{\text{strong}}$ with Γ group, $\lambda_w \in B(\ell_2(\Gamma))$ with $\lambda_w \delta_s = \delta_{ws}$.

 $L_2(M) = L_2(M, \tau)$ GNS-space with respect to τ . Completion of M with respect to

$$\langle x, y \rangle = \tau(y^*x), \qquad x, y \in M.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\Omega_{\tau} = 1_M$ cyclic vector.

Von Neumann algebra: *-subalgebra M of B(H) that is closed in the strong topology.

Setup

Approximatio properties

Strong solidity

Gaussian algebras

Quantum groups *M* is called finite if there exists a normal tracial state τ on *M*.

Examples: $\overline{\pi_{\tau}(A)}^{\text{strong}}$ of any GNS-representation of a UHF algebra with τ a trace.

Examples: $VN(\Gamma) = \overline{\{\lambda_w \mid w \in \Gamma\}}^{\text{strong}}$ with Γ group, $\lambda_w \in B(\ell_2(\Gamma))$ with $\lambda_w \delta_s = \delta_{ws}$.

 $L_2(M) = L_2(M, \tau)$ GNS-space with respect to τ . Completion of M with respect to

$$\langle x, y \rangle = \tau(y^*x), \qquad x, y \in M.$$

 $\Omega_{\tau} = 1_M$ cyclic vector.

 $\Phi: M \to M$ is called completely positive if

$$\mathrm{id}_n\otimes\Phi:M_n(\mathbb{C})\otimes M\to M_n(\mathbb{C})\otimes M$$

A D F A 同 F A E F A E F A Q A

is positive for all n, i.e. maps positive elements to positive elements.

Setup:

- \blacksquare *M* = finite von Neumann algebra.
- τ = normal faithful tracial state on *M*
- Ω_{τ} = cyclic vector for GNS-representation of *M*

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Setup

Approximation properties

Strong solidity

Gaussian algebras

Setup:

- \blacksquare *M* = finite von Neumann algebra.
- τ = normal faithful tracial state on M
- Ω_{τ} = cyclic vector for GNS-representation of *M*
- A quantum Markov semi-group (Φ_t)_{$t \ge 0$} is a semi-group of normal unital completely positive (ucp) maps on a von Neumann algebra *M* that is point-strongly continuous.

They yield L2-maps by Kadison-Schwarz,

$$\Phi_t^{(2)}: x\Omega_\tau \mapsto \Phi_t(x)\Omega_\tau.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Setup

Approximation properties

Strong solidity

Gaussian algebras

Setup:

- \blacksquare *M* = finite von Neumann algebra.
- τ = normal faithful tracial state on *M*
- Ω_τ = cyclic vector for GNS-representation of M
- A quantum Markov semi-group (Φ_t)_{$t \ge 0$} is a semi-group of normal unital completely positive (ucp) maps on a von Neumann algebra *M* that is point-strongly continuous.

They yield L2-maps by Kadison-Schwarz,

$$\Phi_t^{(2)}: x\Omega_\tau \mapsto \Phi_t(x)\Omega_\tau.$$

Unbounded generator $\Delta :\subseteq L_2(M) \rightarrow L_2(M)$ such that,

$$\Phi_t^{(2)}(x) = \exp(-t\Delta).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Setup

Approximation properties

Strong solidity

Gaussian algebras

Setup:

- \blacksquare *M* = finite von Neumann algebra.
- τ = normal faithful tracial state on *M*
- Ω_τ = cyclic vector for GNS-representation of M
- A quantum Markov semi-group (Φ_t)_{$t \ge 0$} is a semi-group of normal unital completely positive (ucp) maps on a von Neumann algebra *M* that is point-strongly continuous.

They yield L2-maps by Kadison-Schwarz,

$$\Phi_t^{(2)}: x\Omega_\tau \mapsto \Phi_t(x)\Omega_\tau.$$

Unbounded generator $\Delta :\subseteq L_2(M) \rightarrow L_2(M)$ such that,

$$\Phi_t^{(2)}(x) = \exp(-t\Delta).$$

Example: $VN(\mathbb{F}_n)$ with $\Phi_t(\lambda_w) \exp(-t|w|)\lambda_w$ [Haagerup '78/79].

Setup

Approximation properties

Strong solidity

Gaussian algebras

Approximation properties

Applications: amenability

Definition: A von Neumann algebra *M* is amenable if there is a net of normal finite rank unital completely positive maps $\Phi_i : M \to M$ such $\forall x \in M$ we have $\Phi_i(x) \to x$ strongly.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Setup

Approximation properties

Strong solidity

Gaussian algebras

Applications: amenability

Definition: A von Neumann algebra *M* is amenable if there is a net of normal finite rank unital completely positive maps $\Phi_i : M \to M$ such $\forall x \in M$ we have $\Phi_i(x) \to x$ strongly.

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups

Theorem (Cipriani-Sauvageot '17, see also C 20)

M is amenable iff \exists a quantum Markov semi-group with generator Δ with complete set of eigenvalues Δ_k , $k \in \mathbb{N}$ (multiplicity allowed) such that

$$\Delta_k \gg \log(k).$$

(ロ) (同) (三) (三) (三) (○) (○)

Applications: amenability

Definition: A von Neumann algebra *M* is amenable if there is a net of normal finite rank unital completely positive maps $\Phi_i : M \to M$ such $\forall x \in M$ we have $\Phi_i(x) \to x$ strongly.

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups

Theorem (Cipriani-Sauvageot '17, see also C 20)

M is amenable iff \exists a quantum Markov semi-group with generator Δ with complete set of eigenvalues Δ_k , $k \in \mathbb{N}$ (multiplicity allowed) such that

$$\Delta_k \gg \log(k).$$

Example: Let $\alpha \in (0, \infty)$. Then

$$\lambda_{w} \mapsto e^{-t|w|^{\alpha}} \lambda_{w}$$

is a QMS on $VN(\mathbb{F}_n)$ if and only if $0 < \alpha \le 1$ [see also Bozejko].

Applications: Haagerup property

Definition: A finite von Neumann algebra *M* has Haagerup property if there is a net of normal trace preserving unital completely positive maps $\Phi_i : M \to M$ such that $\Phi_i^{(2)}$ is compact and $\forall \xi \in L_2(M)$ we have $\|\Phi_i^{(2)}\xi - \xi\| \to 0$.

(日) (日) (日) (日) (日) (日) (日)

Setup

Approximation properties

Strong solidity

Gaussian algebras

Applications: Haagerup property

Definition: A finite von Neumann algebra *M* has Haagerup property if there is a net of normal trace preserving unital completely positive maps $\Phi_i : M \to M$ such that $\Phi_i^{(2)}$ is compact and $\forall \xi \in L_2(M)$ we have $\|\Phi_i^{(2)}\xi - \xi\| \to 0$.

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups

Theorem (C-Skalski '15, Jolissaint-Martin '04)

M has Haagerup property iff \exists a quantum Markov semi-group with generator Δ with complete set of eigenvalues $\Delta_k, k \in \mathbb{N}$ (multiplicity allowed) such that

$$\Delta_k \to \infty$$
.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Applications: Haagerup property

Definition: A finite von Neumann algebra *M* has Haagerup property if there is a net of normal trace preserving unital completely positive maps $\Phi_i : M \to M$ such that $\Phi_i^{(2)}$ is compact and $\forall \xi \in L_2(M)$ we have $\|\Phi_i^{(2)}\xi - \xi\| \to 0$.

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups

Theorem (C-Skalski '15, Jolissaint-Martin '04)

M has Haagerup property iff \exists a quantum Markov semi-group with generator Δ with complete set of eigenvalues $\Delta_k, k \in \mathbb{N}$ (multiplicity allowed) such that

$$\Delta_k \to \infty$$
.

Example: $VN(\mathbb{F}_n)$ has Haagerup property, since

$$\lambda_{w} \mapsto e^{-t|w|} \lambda_{w}$$

(日) (日) (日) (日) (日) (日) (日)

is a QMS on $VN(\mathbb{F}_n)$ [Haagerup '78/79].

Crash course strong solidity

Setup

Approximatic properties

Strong solidity

Gaussian algebras

Quantum groups *M* is called strong solidity [Ozawa-Popa '07] if for any diffuse amenable von Neumann subalgebra $B \subseteq M$ the normalizing algebra

$$\{u \in M \text{ unitary } | uBu^* = B\}''$$

is again amenable.

Remark: In particular, strong solidity + non-amenability implies:

 $M \not\simeq L_{\infty}(X) \rtimes \Lambda, \qquad M \not\simeq M_1 \otimes M_2.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Crash course strong solidity

References: Ozawa, Ioana, Popa, Vaes, Isono, Peterson, Chifan, Sinclair, Udrea,

▲□▶▲□▶▲□▶▲□▶ □ のQ@

...

\pm Theorem (Cipriani-Sauvageot): \exists is a derivation ∇ that is the square root of Δ

 Δ generator of a quantum Markov semi-group on M with some extra technical conditions omitted. There exists

A subspace $Dom(\nabla) \subseteq Dom(\Delta) \subseteq L_2(M)$ that is moreover a *-algebra,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- An *M*-*M*-bimodule \mathcal{H}_{∇} ,
- A closable derivation $\nabla : \text{Dom}(\nabla) \to \mathcal{H}_{\nabla}$,

such that $\nabla^*\overline{\nabla} = \Delta$.

Setup

Approximation properties

Strong solidity

Gaussian algebras

\pm Theorem (Cipriani-Sauvageot): \exists is a derivation ∇ that is the square root of Δ

 Δ generator of a quantum Markov semi-group on M with some extra technical conditions omitted. There exists

- A subspace $Dom(\nabla) \subseteq Dom(\Delta) \subseteq L_2(M)$ that is moreover a *-algebra,
- An *M*-*M*-bimodule \mathcal{H}_{∇} ,
- A closable derivation $\nabla : \text{Dom}(\nabla) \to \mathcal{H}_{\nabla}$,

such that $\nabla^* \overline{\nabla} = \Delta$.

Definition gradient bimodule \mathcal{H}_{∇} . Assume for simplicity a dense *-algebra $Dom(\nabla) \subseteq Dom(\Delta)$. Consider inner products on $Dom(\nabla) \otimes Dom(\nabla)$ by

$$\langle a \otimes b, c \otimes d \rangle = \langle \Gamma(a, c)b, d \rangle_{\tau},$$

with gradient

$$\Gamma(a,c) = \frac{1}{2}(c^*\Delta(a) + \Delta(c)^*a - \Delta(c^*a)).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Setup

Approximation properties

Strong solidity

Gaussian algebras

\pm Theorem (Cipriani-Sauvageot): \exists is a derivation ∇ that is the square root of Δ

 Δ generator of a quantum Markov semi-group on M with some extra technical conditions omitted. There exists

- A subspace $Dom(\nabla) \subseteq Dom(\Delta) \subseteq L_2(M)$ that is moreover a *-algebra,
- An *M*-*M*-bimodule \mathcal{H}_{∇} ,
- A closable derivation $\nabla : \text{Dom}(\nabla) \to \mathcal{H}_{\nabla}$,

such that $\nabla^* \overline{\nabla} = \Delta$.

Definition gradient bimodule \mathcal{H}_{∇} . Assume for simplicity a dense *-algebra $Dom(\nabla) \subseteq Dom(\Delta)$. Consider inner products on $Dom(\nabla) \otimes Dom(\nabla)$ by

$$\langle a \otimes b, c \otimes d \rangle = \langle \Gamma(a, c)b, d \rangle_{\tau},$$

with gradient

$$\Gamma(a,c) = \frac{1}{2}(c^*\Delta(a) + \Delta(c)^*a - \Delta(c^*a)).$$

 \mathcal{H}_{∇} is the completion of $\mathrm{Dom}(\nabla) \otimes \mathrm{Dom}(\nabla)$ modulo its degenerate part. Set,

$$\begin{aligned} x \cdot (a \otimes b) &= xa \otimes b - x \otimes ab, \qquad (a \otimes b) \cdot x = a \otimes bx, \\ \nabla : \mathrm{Dom}(\nabla) \mapsto \mathcal{H}_{\nabla} : x \mapsto x \otimes 1. \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Setup

Approximation properties

Strong solidity

Gaussian algebras

\pm Theorem (Cipriani-Sauvageot): \exists is a derivation ∇ that is the square root of Δ

 Δ generator of a quantum Markov semi-group on M with some extra technical conditions omitted. There exists

- A subspace $Dom(\nabla) \subseteq Dom(\Delta) \subseteq L_2(M)$ that is moreover a *-algebra,
- An *M*-*M*-bimodule \mathcal{H}_{∇} ,
- A closable derivation ∇ : Dom $(\nabla) \rightarrow \mathcal{H}_{\nabla}$,

such that $\nabla^* \overline{\nabla} = \Delta$.

Definition gradient bimodule \mathcal{H}_{∇} . Assume for simplicity a dense *-algebra $Dom(\nabla) \subseteq Dom(\Delta)$. Consider inner products on $Dom(\nabla) \otimes Dom(\nabla)$ by

$$\langle a \otimes b, c \otimes d \rangle = \langle \Gamma(a, c)b, d \rangle_{\tau},$$

with gradient

$$\Gamma(a,c) = \frac{1}{2}(c^*\Delta(a) + \Delta(c)^*a - \Delta(c^*a)).$$

 \mathcal{H}_{∇} is the completion of $\mathrm{Dom}(\nabla) \otimes \mathrm{Dom}(\nabla)$ modulo its degenerate part. Set,

$$x \cdot (a \otimes b) = xa \otimes b - x \otimes ab, \qquad (a \otimes b) \cdot x = a \otimes bx,$$

$$\nabla : \text{Dom}(\nabla) \mapsto \mathcal{H}_{\nabla} : x \mapsto x \otimes 1.$$

Leibniz rule: $\nabla(xy) = x\nabla(y) + \nabla(x)y$. Root: $\nabla^*\overline{\nabla} \equiv \Delta$.

Setup

Approximatio properties

Strong solidity

Gaussian algebras

Non-commutative Riesz transforms

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups

We now define

$$\nabla \Delta^{-\frac{1}{2}} : L_2(M) \to \mathcal{H}_{\nabla}$$

called the Riesz transform.

The Riesz transform is isometric:

$$\begin{split} \langle \nabla \Delta^{-\frac{1}{2}}(x), \nabla \Delta^{-\frac{1}{2}}(x) \rangle_{H_{\nabla}} &= \langle \nabla^* \nabla \Delta^{-\frac{1}{2}}(x), \Delta^{-\frac{1}{2}}(x) \rangle_{L_2(M)} \\ &= \langle \Delta \Delta^{-\frac{1}{2}}(x), \Delta^{-\frac{1}{2}}(x) \rangle_{L_2(M)} \\ &= \langle x, x \rangle_{L_2(M)}, \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

(for x in a suitable dense domain).

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups

Definition: Akemann-Ostrand

A (finite) von Neumann algebra M has the Akemann-Ostrand property if there exists a dense unital C*-subalgebra $A \subseteq M$ such that

2 There exists a ucp map

$$\theta: A \otimes_{\min} A^{\mathrm{op}} \to B(L_2(M))$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

such that $\theta(a \otimes b^{op}) - ab^{op}$ is compact for all $a, b \in A$.

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups Suppose that $A \subseteq M$ is a locally reflexive C*-subalgebra.

Proposition (C, Isono, Wasilewski)

Suppose that

1 H_{∇} is weakly contained in $L_2(M) \otimes L_2(M)$.

2 $(a \otimes b^{\text{op}}) \circ \nabla \Delta^{-\frac{1}{2}} = \nabla \Delta^{-\frac{1}{2}} \circ \pi_I(a) \pi_r(b^{\text{op}})$ is compact $\forall a, b \in A$.

(ロ) (同) (三) (三) (三) (○) (○)

Then *M* satisfies the Akemann-Ostrand property.

Proof. $\theta(a \otimes b^{\text{op}}) := (\nabla \Delta^{-\frac{1}{2}})^* (a \otimes b^{\text{op}}) \nabla \Delta^{-\frac{1}{2}}$ will do.

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups Suppose that $A \subseteq M$ is a locally reflexive C*-subalgebra.

Proposition (C, Isono, Wasilewski)

Suppose that

1 H_{∇} is weakly contained in $L_2(M) \otimes L_2(M)$.

2 $(a \otimes b^{\text{op}}) \circ \nabla \Delta^{-\frac{1}{2}} = \nabla \Delta^{-\frac{1}{2}} \circ \pi_I(a) \pi_I(b^{\text{op}})$ is compact $\forall a, b \in A$.

Then *M* satisfies the Akemann-Ostrand property.

Proof. $\theta(a \otimes b^{\mathrm{op}}) := (\nabla \Delta^{-\frac{1}{2}})^* (a \otimes b^{\mathrm{op}}) \nabla \Delta^{-\frac{1}{2}}$ will do.

Theorem (C-Isono-Wasilewski): Condition 2 is in most cases easy to check.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Suppose that $A \subseteq M$ is a locally reflexive C*-subalgebra.

Proposition (C, Isono, Wasilewski)

Suppose that

Strong solidity

Gaussian algebras

Quantum groups

1 H_{∇} is weakly contained in $L_2(M) \otimes L_2(M)$.

2 $(a \otimes b^{\text{op}}) \circ \nabla \Delta^{-\frac{1}{2}} = \nabla \Delta^{-\frac{1}{2}} \circ \pi_l(a) \pi_r(b^{\text{op}})$ is compact $\forall a, b \in A$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Then *M* satisfies the Akemann-Ostrand property.

Suppose that $A \subseteq M$ is a locally reflexive C*-subalgebra.

Proposition (C, Isono, Wasilewski)

Suppose that

Strong solidity

1 H_{∇} is weakly contained in $L_2(M) \otimes L_2(M)$.

2 $(a \otimes b^{\text{op}}) \circ \nabla \Delta^{-\frac{1}{2}} = \nabla \Delta^{-\frac{1}{2}} \circ \pi_I(a) \pi_I(b^{\text{op}})$ is compact $\forall a, b \in A$.

Then *M* satisfies the Akemann-Ostrand property.

If for all $a, b \in A \subset M, t > 0$ the following map

 $\Psi_t^{a,b}: x \mapsto \Phi_t(\Delta(axb) + a\Delta(x)b - a\Delta(xb) - \Delta(ax)b)$

extends to a bounded map $L_2(M) \rightarrow L_2(M)$ that is moreover Hilbert-Schmidt for t > 0, then we say that Φ is gradient- S_2 .

Suppose that $A \subseteq M$ is a locally reflexive C*-subalgebra.

Proposition (C, Isono, Wasilewski)

Suppose that

Strong solidity

1 H_{∇} is weakly contained in $L_2(M) \otimes L_2(M)$.

2 $(a \otimes b^{\text{op}}) \circ \nabla \Delta^{-\frac{1}{2}} = \nabla \Delta^{-\frac{1}{2}} \circ \pi_I(a) \pi_I(b^{\text{op}})$ is compact $\forall a, b \in A$.

Then *M* satisfies the Akemann-Ostrand property.

If for all $a, b \in A \subset M, t > 0$ the following map

 $\Psi_t^{a,b}: x \mapsto \Phi_t(\Delta(axb) + a\Delta(x)b - a\Delta(xb) - \Delta(ax)b)$

extends to a bounded map $L_2(M) \rightarrow L_2(M)$ that is moreover Hilbert-Schmidt for t > 0, then we say that Φ is gradient- S_2 .

Proposition (C)

Gradient- S_2 implies that H_{∇} is weakly contained in $L_2(M) \otimes L_2(M)$ (Condition 1).

A D F A 同 F A E F A E F A Q A

Crash course strong solidity

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Setup

Approximatio properties

Strong solidity

Gaussian algebras

Quantum groups

 $F = \mathbb{C}\Omega \oplus H \oplus (H \otimes H) \oplus (H \otimes H \otimes H) \oplus (H \otimes H \otimes H \otimes H \otimes H) \oplus \dots$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Fix $H = \mathbb{C}^n$ finite dimensional Hilbert space \Rightarrow Set Fock space:

 $F = \mathbb{C}\Omega \oplus H \oplus (H \otimes H) \oplus (H \otimes H \otimes H) \oplus (H \otimes H \otimes H \otimes H) \oplus \dots$

Consider creation and annihilation operators:

 $\begin{aligned} \mathbf{a}^*(\xi) : &\eta_1 \otimes \ldots \otimes \eta_n = \xi \otimes \eta_1 \otimes \ldots \otimes \eta_n, \\ \mathbf{a}(\xi) : &\eta_1 \otimes \ldots \otimes \eta_n = \langle \xi, \eta_1 \rangle \eta_2 \otimes \ldots \otimes \eta_n. \end{aligned}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Setup

Approximatic properties

Strong solidity

Gaussian algebras

Fix $H = \mathbb{C}^n$ finite dimensional Hilbert space \Rightarrow Set Fock space:

 $F = \mathbb{C}\Omega \oplus H \oplus (H \otimes H) \oplus (H \otimes H \otimes H) \oplus (H \otimes H \otimes H \otimes H \otimes H) \oplus \dots$

Consider creation and annihilation operators:

 $\begin{aligned} \mathbf{a}^*(\xi) : &\eta_1 \otimes \ldots \otimes \eta_n = \xi \otimes \eta_1 \otimes \ldots \otimes \eta_n, \\ \mathbf{a}(\xi) : &\eta_1 \otimes \ldots \otimes \eta_n = \langle \xi, \eta_1 \rangle \eta_2 \otimes \ldots \otimes \eta_n. \end{aligned}$

A D F A 同 F A E F A E F A Q A

Voiculescu's free Gaussian algebra: $\Gamma(H) = \{a(\xi) + a^*(\xi) \mid \xi \in H\}''$.

Setup

Approximatio properties

Strong solidity

Gaussian algebras

Fix $H = \mathbb{C}^n$ finite dimensional Hilbert space \Rightarrow Set Fock space:

 $F = \mathbb{C}\Omega \oplus H \oplus (H \otimes H) \oplus (H \otimes H \otimes H) \oplus (H \otimes H \otimes H \otimes H) \oplus \dots$

Consider creation and annihilation operators:

 $\begin{aligned} \mathbf{a}^*(\xi) : &\eta_1 \otimes \ldots \otimes \eta_n = \xi \otimes \eta_1 \otimes \ldots \otimes \eta_n, \\ \mathbf{a}(\xi) : &\eta_1 \otimes \ldots \otimes \eta_n = \langle \xi, \eta_1 \rangle \eta_2 \otimes \ldots \otimes \eta_n. \end{aligned}$

Voiculescu's free Gaussian algebra: $\Gamma(H) = \{a(\xi) + a^*(\xi) \mid \xi \in H\}''$.

Remark: Can *q*-symmetrize the inner product \Rightarrow *q*-Gaussian algebras $q \in [-1, 1]$ (Bozejko-Speicher, 1993).

• q = 1 bosonic.

■ q = -1 fermionic, harmonic oscillator.

• q = 0 free, c.f. above.

[Bozejko-(Kümmerer)-Speicher].

Setup

Approximatio properties

Strong solidity

Gaussian algebra<u>s</u>

Setup

Approximatio properties

Strong solidity

Gaussian algebras

Quantum groups

Example (continued): $\xi_1 \otimes \ldots \otimes \xi_n \in F$ in the Fock space. Then $\exists W(\xi_1 \otimes \ldots \otimes \xi_n) \in \Gamma(H)$ such that

 $W(\xi_1 \otimes \ldots \otimes \xi_n)\Omega = \xi_1 \otimes \ldots \otimes \xi_n.$

(日)

Note: this is quantization.

Setup

Approximatio properties

Strong solidity

Gaussian algebras

Quantum groups

Example (continued): $\xi_1 \otimes \ldots \otimes \xi_n \in F$ in the Fock space. Then $\exists W(\xi_1 \otimes \ldots \otimes \xi_n) \in \Gamma(H)$ such that

 $W(\xi_1 \otimes \ldots \otimes \xi_n)\Omega = \xi_1 \otimes \ldots \otimes \xi_n.$

Note: this is quantization.

The Fock space semi-group

$$\Phi_t^{(2)}: F \to F: \xi_1 \otimes \ldots \xi_n \mapsto e^{-tn} \xi_1 \otimes \ldots \otimes \xi_n.$$

lifts to the algebra level

$$\Phi_t: \Gamma(H) \to \Gamma(H): W(\xi_1 \otimes \ldots \otimes \xi_n) \mapsto e^{-tn} W(\xi_1 \otimes \ldots \otimes \xi_n).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Note: this is second quantization.

Setup

Approximatio properties

Strong solidity

Gaussian algebras

Quantum groups

Example (continued): $\xi_1 \otimes \ldots \otimes \xi_n \in F$ in the Fock space. Then $\exists W(\xi_1 \otimes \ldots \otimes \xi_n) \in \Gamma(H)$ such that

 $W(\xi_1 \otimes \ldots \otimes \xi_n)\Omega = \xi_1 \otimes \ldots \otimes \xi_n.$

Note: this is quantization.

The Fock space semi-group

$$\Phi_t^{(2)}: F \to F: \xi_1 \otimes \ldots \xi_n \mapsto e^{-tn} \xi_1 \otimes \ldots \otimes \xi_n.$$

lifts to the algebra level

$$\Phi_t: \Gamma(H) \to \Gamma(H): W(\xi_1 \otimes \ldots \otimes \xi_n) \mapsto e^{-tn} W(\xi_1 \otimes \ldots \otimes \xi_n)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Note: this is second quantization.

 $(\Phi_t)_{t\geq 0}$ is a quantum Markov semi-group (Ornstein-Uhlenbeck semi-group).

Theorem (C-Isono-Wasilewski)

 $(\Phi_t)_{t>0}$ is immediately gradient- S_2 if

 $|q|\leq \dim(H)^{-1/2},$

(ロ) (同) (三) (三) (三) (○) (○)

and consequently $\Gamma_q(H)$ has the Akemann-Ostrand property.

Theorem (Shlyakhtenko)

 $\Gamma_q(H)$ has the Akemann-Ostrand property for $|q| < \sqrt{2} - 1$ and H finite dimensional.

Theorem (Avsec)

 $\Gamma_q(H)$ is strongly solid for all $q \in (-1, 1)$ and H finite dimensional.

Open questions:

- Strong solidity with *H* infinite dimensional.
- Akemann-Ostrand property beyond the range $|q| \le \max(\sqrt{2} 1, \dim(H)^{1/2}).$

Setup

Approximati properties

Strong solidity

Gaussian algebras

Setup
Approximation
propertiesA compact quantum group is a pair $\mathbb{G} := (A, \Delta_A)$ with A a unital \mathbb{C}^* -algebra and
 $\Delta_A : A \to A \otimes A$ a comultiplication such that
 $(\Delta_A \otimes \mathrm{id})\Delta_A = (\mathrm{id} \otimes \Delta_A)\Delta_A$,Strong solidity
Gaussian
algebrasand such that
 $\Delta_A(A)(A \otimes 1)$ and $\Delta_A(A)(1 \otimes A)$,
are dense in $A \otimes A$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups

A compact quantum group is a pair $\mathbb{G} := (A, \Delta_A)$ with A a unital C*-algebra and $\Delta_A : A \to A \otimes A$ a comultiplication such that

$$(\Delta_{\mathcal{A}} \otimes \mathrm{id})\Delta_{\mathcal{A}} = (\mathrm{id} \otimes \Delta_{\mathcal{A}})\Delta_{\mathcal{A}},$$

and such that

 $\Delta_A(A)(A \otimes 1)$ and $\Delta_A(A)(1 \otimes A)$,

are dense in $A \otimes A$.

Free orthogonal quantum group O_N^+ is generated by a matrix $u = (u_{ij})_{ij}$ with the relations that u is unitary and $\overline{u} = u$. Compultiplication:

$$\Delta_{O_N^+}(u_{ij}) = \sum_{k=1}^n u_{ik} \otimes u_{kj}.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Theorem (C)

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups

Let $\mathbb{G} = (A, \Delta_A)$ be a quantum group with tracial Haar state τ that can be obtained from O_N^+ (equivalently $SU_q(2)$) through (repeated) applications of:

- Taking free products;
- Taking any monoidally equivalent compact quantum group;
- Taking a dual quantum subgroup;
- Taking a free wreath product with S⁺_N [Lemeux-Tarrago];
- Taking a tensor product with a finite (quantum) group.

Then $L_{\infty}(\mathbb{G}) = \pi_{\tau}(\mathbb{G})''(A)$ admits a quantum Markov semi-group that is gradient- S_2 .

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (C)

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups

Let $\mathbb{G} = (A, \Delta_A)$ be a quantum group with tracial Haar state τ that can be obtained from O_N^+ (equivalently $SU_q(2)$) through (repeated) applications of:

- Taking free products;
- Taking any monoidally equivalent compact quantum group;
- Taking a dual quantum subgroup;
- **Taking a free wreath product with** S_N^+ [Lemeux-Tarrago];
- Taking a tensor product with a finite (quantum) group.

Then $L_{\infty}(\mathbb{G}) = \pi_{\tau}(\mathbb{G})''(A)$ admits a quantum Markov semi-group that is gradient- S_2 .

Consequently (using [de Commer-Freslon-Yamshita] for CCAP + [Isono, Popa-Vaes]) it is strongly solid.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (C)

Setup

Approximation properties

Strong solidity

Gaussian algebras

Quantum groups

Let $\mathbb{G} = (A, \Delta_A)$ be a quantum group with tracial Haar state τ that can be obtained from O_N^+ (equivalently $SU_q(2)$) through (repeated) applications of:

- Taking free products;
- Taking any monoidally equivalent compact quantum group;
- Taking a dual quantum subgroup;
- **Taking a free wreath product with** S_N^+ [Lemeux-Tarrago];
- Taking a tensor product with a finite (quantum) group.

Then $L_{\infty}(\mathbb{G}) = \pi_{\tau}(\mathbb{G})''(A)$ admits a quantum Markov semi-group that is gradient- S_2 .

Consequently (using [de Commer-Freslon-Yamshita] for CCAP + [Isono, Popa-Vaes]) it is strongly solid.

- All non-crossing (non-colored) partition/easy quantum groups clasified by Banica-Speicher and Weber.
- Hyperoctahedral series of quantum groups.