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Markov process: Probabilistic process in which the subsequent state solely
depends on the current state, and does not remember anything from the past.

Quantum probability:
m Probability space = von Neumann algebra with a trace.
m State = density operators (positive, trace 1).

m Markov maps = trace preserving normal unital completely positive (ucp)
maps (quantum channels).
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Basic definitions

Von Neumann algebra: x-subalgebra M of B(H) that is closed in the strong
topology.

M is called finite if there exists a normal tracial state = on M.

Examples: 7, (A)""" of any GNS-representation of a UHF algebra with T a trace.

strong

Examples: VN(I') = {\w | w €T}
Aw(s‘g = (Sws.

with I group, Aw € B(¢42(T")) with

Lo(M) = Lp(M, 7) GNS-space with respect to 7. Completion of M with respect to
xy)y=7(y"x),  xyeM
Q- = 1) cyclic vector.

& : M — M is called completely positive if
idn @@ : Mp(C) @ M — Mp(C) @ M

is positive for all n, i.e. maps positive elements to positive elements.
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Quantum Markov semi-groups

Setup:
m M = finite von Neumann algebra.
m 7 = normal faithful tracial state on M
m Q. = cyclic vector for GNS-representation of M

A quantum Markov semi-group (®¢)>o is @ semi-group of normal unital
completely positive (ucp) maps on a von Neumann algebra M that is point-strongly
continuous.

They yield L,-maps by Kadison-Schwarz,

@

L xQr = d(X)Qr.

Unbounded generator A :C Ly(M) — Lp(M) such that,

o (x) = exp(—tA).

Example: VN(F,) with ®:(Aw) exp(—t|w|)Aw [Haagerup '78/79].




Approximation properties

Some approximation/rigidity properties of von Neumann algebras:

Approximation
properties Property(T)

Haagerup property, (...)

Amenable
®>\6A(M2((C)7 Px)
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Applications: amenability

Definition: A von Neumann algebra M is amenable if there is a net of normal
finite rank unital completely positive maps ¢; : M — M such ¥x € M we have
®;(x) — x strongly.

Approximation
properties

Theorem ( Cipriani-Sauvageot 17, see also C 20)

M is amenable iff 3 a quantum Markov semi-group with generator A with complete
set of eigenvalues Ak, k € N (multiplicity allowed) such that

Ay > log(k).

Example: Let a € (0, 00). Then
Aw > e~ W7y,

is a QMS on VN(Fp) if and only if 0 < a < 1 [see also Bozejko].
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Applications: Haagerup property

Definition: A finite von Neumann algebra M has Haagerup property if there is a
net of normal trace preserving unital completely positive maps ®; : M — M such

that d>§2) is compact and V¢ € Ly(M) we have \\4)52)5 —&|| — 0.

Approximation
properties

Theorem (C-Skalski '15, Jolissaint—Martin *04)

M has Haagerup property iff 3 a quantum Markov semi-group with generator A
with complete set of eigenvalues Ay, k € N (multiplicity allowed) such that

Ay — 0.

i

<
Example: VN(F,) has Haagerup property, since
Ay e 1wl

is a QMS on VN(F,) [Haagerup ’ 78/79].



Crash course strong solidity

M is called strong solidity [Ozawa-Popa ’07] if for any diffuse amenable von
Neumann subalgebra B C M the normalizing algebra

Strong solidity
{u € M unitary | uBu* = B}"

is again amenable.

Remark: In particular, strong solidity + non-amenability implies:

M#Loo(X)x A, MM @M.



Crash course strong solidity

(1) Malleable
deformations \

- Approximate linear
Strong solidity + almost commuting
intertwiners

QMS’s and
Gradient-S,

W*-CCAP .
o Wr-CRAP ¢:>< Weak compactness

Strong solidity

References: Ozawa, loana, Popa, Vaes, Isono, Peterson, Chifan, Sinclair, Udrea,
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A generator of a quantum Markov semi-group on M with some extra technical
conditions omitted. There exists

m A subspace Dom(V) C Dom(A) C Ly(M) that is moreover a x-algebra,
m An M-M-bimodule Hv,
m A closable derivation V : Dom(V) — Hv,
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Definition gradient bimodule Hy . Assume for simplicity a dense *-algebra
Dom(V) C Dom(A). Consider inner products on Dom(V) ® Dom(V) by

(a® b,c®d) = (I'(a,c)b,d)-,
with gradient
M(ac)= %(C*A(a) + A(c)*a— A(c*a)).

‘Hy is the completion of Dom(V) ® Dom(V) modulo its degenerate part. Set,
x-(a®b)=xa®b— xR ab, (a®b) - x = a® bx,
V:Dom(V)— Hy X — x® 1.

Leibniz rule: V(xy) = xV(y) + V(x)y. Root: V*V = A.



Non-commutative Riesz transforms

We now define ;
VATz2 : [L(M) —» Hy

Strong solidity called the Riesz transform.
The Riesz transform is isometric:
_1 _1 . _1 _1
(VAT2(x), VAT 2(X))pe =(V*VAT2(X), AT2(X))1,(m)
_1 _1
=(AAT2(x), A7 Z(X)) 1, (m)
=X, X) Ly (M)

(for x in a suitable dense domain).



Crash course Deformation-Rigidity theory

Definition: Akemann-Ostrand

Strong solidity A (finite) von Neumann algebra M has the Akemann-Ostrand property if there
exists a dense unital C*-subalgebra A C M such that

Aiis locally reflexive.
There exists a ucp map

0 : AQ®@min A® — B(L2(M))

such that 8(a ® b°P) — ab°? is compact for all a, b € A.
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Then M satisfies the Akemann-Ostrand property.

Proof. 6(a® b®) := (VA 2)*(a® b®) VA2 will do.



Crash course Deformation-Rigidity theory

Suppose that A C M is a locally reflexive C*-subalgebra.

Proposition (C, Isono, Wasilewski)

Strong solidity
Suppose that

Hy is weakly contained in Ly(M) @ La(M).
(a® b°?) o VA“Z=VA Zo mi(a)mr(b°P) is compact Va, b € A.
Then M satisfies the Akemann-Ostrand property.

Proof. 6(a® b®) := (VA 2)*(a® b®) VA2 will do.

Theorem (C-lsono-Wasilewski): Condition 2 is in most cases easy to check.
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Suppose that A C M is a locally reflexive C*-subalgebra.

Proposition (C, Isono, Wasilewski)

Suppose that

Hy is weakly contained in Ly (M) ® La(M).

(@®bP)o VA E = VA om(a)r(b) is compact Va, b € A.
Then M satisfies the Akemann-Ostrand property.

Strong solidity

Ifforalla,b e A C M,t > 0 the following map
Wb x s @y(A(axb) + al(x)b — al(xb) — A(ax)b)

extends to a bounded map Lo(M) — Lo(M) that is moreover Hilbert-Schmidt for
t > 0, then we say that ¢ is gradient-S,.

Proposition (C)

Gradient-S, implies that Hy is weakly contained in Lo(M) ® L(M) (Condition 1).



Strong solidity

Approximate linear
+ almost commuting
intertwiners

(1) Malleable
deformations

QMS’s and
Gradient-S;

W*-CCAP
or W-CBAP
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Gaussian algebras

Fix H = C" finite dimensional Hilbert space = Set Fock space:

F=CQoHe(HoH)a(HOHH) e (HOHRHRH)®...

Consider creation and annihilation operators:

Gaussian aE) M. =E(RQM Q... Q N,
algebras
ag)me...em= (En)n®...@nm.

Voiculescu’s free Gaussian algebra: I'(H) = {a(¢) + a*(&) | £ € H}.

Remark: Can g-symmetrize the inner product = g-Gaussian algebras g € [—1, 1]
(Bozejko-Speicher, 1993).

® g = 1 bosonic.

m g = —1 fermionic, harmonic oscillator.

m g = 0 free, c.f. above.
[Bozejko-(Kimmerer)-Speicher].
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Quantum Markov semi-groups

Example (continued): £1 ® ... ® &y € F in the Fock space. Then 3
W(& ®...&n) € T(H) such that

WE®..02=6®...0&.

Note: this is quantization.

[CEUESED
algebras

The Fock space semi-group
oD FSF @ tam e ®... ®h
lifts to the algebra level
O T(H) = T(H): WG ®...0&) — e "W ®...0&h).

Note: this is second quantization.

(®¢)r>0 is a quantum Markov semi-group (Ornstein-Uhlenbeck semi-group).



Quantum Markov semi-groups

Theorem (C-Isono-Wasilewski)
(®¢)r>0 is immediately gradient-S; if

lgl < dim(H)~"/2,

and consequently I'q(H) has the Akemann-Ostrand property.
[CEUESED
algebras

Theorem (Shlyakhtenko)

I'4(H) has the Akemann-Ostrand property for |g| < v/2 — 1 and H finite
dimensional.

Theorem (Avsec)

I'q(H) is strongly solid for all g € (—1, 1) and H finite dimensional.

Open questions:
m Strong solidity with H infinite dimensional.

m Akemann-Ostrand property beyond the range
lg| < max(v/2 — 1,dim(H)/2).
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Quantum groups

A compact quantum group is a pair G := (A, A,) with A a unital C*-algebra and
Ap: A— A® Aacomultiplication such that

(Aa®id)As = (id @ Ag)Ag,

and such that
Ap(A)A®1) and  Ax(A)(1® A),

Quantum X
groups are densein A® A.

Free orthogonal quantum group O,Jg is generated by a matrix u = (uj); with the
relations that u is unitary and U = u. Compultiplication:

n
Doy (uy) = D Uik ® .
k=1



Quantum groups

Theorem (C)

Let G = (A, Ap) be a quantum group with tracial Haar state 7 that can be
obtained from Oﬁ (equivalently SUq(2)) through (repeated) applications of:

Taking free products;
m Taking any monoidally equivalent compact quantum group;
m Taking a dual quantum subgroup;

. : + X o
S m Taking a free wreath product with Sy, [Lemeux-Tarrago];
groups m Taking a tensor product with a finite (quantum) group.

Then Lo (G) = 7+(G)" (A) admits a quantum Markov semi-group that is
gradient-S.
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Quantum groups

Theorem (C)

Let G = (A, Ap) be a quantum group with tracial Haar state 7 that can be
obtained from Oﬁ (equivalently SUq(2)) through (repeated) applications of:

Taking free products;
m Taking any monoidally equivalent compact quantum group;
m Taking a dual quantum subgroup;

. : + X o
S m Taking a free wreath product with Sy, [Lemeux-Tarrago];
groups m Taking a tensor product with a finite (quantum) group.

Then Lo (G) = 7+(G)" (A) admits a quantum Markov semi-group that is
gradient-S.

Consequently (using [de Commer-Freslon-Yamshita] for CCAP + [Isono,
Popa-Vaes]) it is strongly solid.

m All non-crossing (non-colored) partition/easy quantum groups clasified by
Banica-Speicher and Weber.

m Hyperoctahedral series of quantum groups.
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