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Introduction

Voiculescu defined several versions of free entropy for an m-tuple of
self-adjoint operators:

Free microstate entropy χ(X1, . . . ,Xm) looks at the Lebesgue
measure of spaces of matrix approximations.

Non-microstate entropy χ∗(X1, . . . ,Xm) looks at the interaction
between X1, . . . , Xm and the free difference quotient and semicircular
perturbations.

Liberation mutual information and entropy is similar to χ∗ but
through a deformation to freely independent copies of the individual
variables.

Voiculescu used χ to show that free group von Neumann algebras have no
Cartan subalgebras, lack property Gamma, and more. Since then, there
have been many similar applications for indecomposability results for free
products.
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Introduction

(Part of) the unification problem for free entropy: When does
χ(X ) = χ∗(X )?

Biane, Capitaine, Guionnet 2003: χ ≤ χ∗.

Dabrowski 2017 and Jekel 2018-2020: χ(X ) = χ∗(X ) when X
satisfies a free Gibbs law for a convex potential with certain regularity
/ growth conditions.

Ji, Natarajan, Vidick, Yuen, and Wright announced a negative
solution of the Connes embedding problem. This implies that there
exist some X with χ(X ) = −∞ and χ∗(X ) > −∞.
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Introduction

We will give an elementary proof that χ ≤ χ∗ as well as generalize it to
the conditional setting. The talk will be organized as follows:
Part 1:

Conditional entropies of Voiculescu and Shlyakhtenko χ(X | B).
Conditional microstates entropy w.r.t. ι : B →

∏
n→U Mn(C).

Relating χ(X | B, ι) with Shlyakhtenko’s version.

Relating conditional microstate entropy and classical entropy.

Part 2:

Conditional non-microstates entropy of Voiculescu.

Classical Fisher information and free Fisher information.

Proof of χ ≤ χ∗.
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Laws and Microstate Spaces

Σm,R will denote the space of non-commutative laws, that is, linear maps
µ : C⟨x1, . . . , xm⟩ → C satisfying

µ(1) = 1,

µ(p∗p) ≥ 0,

µ(pq) = µ(qp),

|µ(xi1 . . . xik )| ≤ Rk for i1, . . . , ik ∈ [m].

Given (M, τ) a tracial von Neumann algebra and X = (X1, . . . ,Xm)
self-adjoint from M, the law of X is µX (p) = τ(p(X )).

We equip Σm,R with the weak-∗ topology. This topology captures
“convergence in moments.” It will be used to define what we mean by
matrix approximation.

Note this definition also makes sense for m = ∞.
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Conditional microstate spaces

We will consider conditional microstate spaces. Here X = (X1, . . . ,Xm)
and Y = (Y1,Y2, . . . ) will represent self-adjoint elements of some (M, τ)
and C⟨x, y⟩ is the formal polynomial ∗-algebra.

Given a neighborhood O of law(X ,Y ) and a tuple Y (n) from Mn(C), we
set

Γ
(n)
R (O | Y (n) ⇝ Y ) = {X (n) ∈ Mn(C)msa : law(X (n),Y (n)) ∈ O}

This represents the space of matrix approximations for X that are
compatible with a given choice of matrix approximations for Y .
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Voiculescu’s conditional free entropy

Lebesgue measure: (Mn(C)d , ⟨·, ·⟩trn) is linearly isometric to Cdn2 , so
transfer the Lebesgue measure through the isometry.

Here we assume that Y is a finite tuple and ∥Xj∥, ∥Yj∥ ≤ R. Let O(k, ϵ)
be the microstate space given by the conditions that the moments up to
order k are within ϵ. Then

χavg(X | Y ) := inf
k,ϵ

lim sup
n→∞

 
Y (n)∈Γ(n)R (OY (k,ϵ))(

1

n2
log vol Γ(n)(OX ,Y (k , ϵ) | Y (n) ⇝ Y ) +m log n

)
.

This gives us the average of the normalized Lebesgue measure of
conditional microstate spaces.
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Shlyakhtenko’s conditional free entropy

As usual, you can take the sup over R at the end, but the answer is
already correct if R is larger than the norms of the Xj ’s and Yj ’s.

Instead of taking the average, Shlyakhtenko took the supremum of the
measures over all the choices of Y (n). This approach adapts easily to Y
being an infinite tuple.

χ(X | Y ) := inf
k,ϵ

lim sup
n→∞

sup
Y (n)∈Γ(n)R (OY (k,ϵ))(

1

n2
log vol Γ(n)(OX ,Y (k , ϵ) | Y (n) ⇝ Y ) +m log n

)
.
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Conditional entropy for a fixed choice of Y (n)

Rather than taking the supremum or average, we can fix a choice of
microstates for Y . Then we would have a conditional entropy that
depends on the choice of microstates.

Fix a free ultrafilter U on N and a sequence of microstates Y (n) such that
limn→U law(Y (n)) = law(Y ). Then set

χU (X | Y (n) ⇝ Y ) := inf
O

lim sup
n→∞

(
1

n2
log vol Γ(n)(O | Y (n) ⇝ Y ) +m log n

)
.
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Conditional entropy for an embedding

Let B = W∗(Y ). The choice of microstates Y (n) gives rise to an

embedding ι : B →
∏

n→U Mn(C) given by ι(Yj) = [Y
(n)
j ].

Lemma (J&P)

Suppose W∗(Y ) = W∗(Z ) = B. If Y (n) ⇝ Y and Z (n) ⇝ Z give rise to
the same embedding ι : B →

∏
n→U Mn(C), then

χU (X | Y (n) ⇝ Y ) = χU (X | Z (n) ⇝ Z ). Hence, we define χU (X | B, ι)
to be the common value for any such choice of microstates for Y (n).

Note Shlyakhtenko proved a similar invariance result over the choice of Y
for his conditional entropy.

The proof goes by way approximating Y by polynomials (or more general
functions) of Z and then getting inclusions of the relative microstate
spaces.
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Relationship with Shlyakhtenko’s entropy

Proposition (J&P)

Let (M, τ) be a tracial von Neumann algebra X = (X1, . . . ,Xm)
self-adjoint elements with ∥Xj∥ ≤ R.

χ(X | B) = sup
U ,ι

χU (X | B, ι).

This proposition represents exchanging a sup with a limit since on the
right we take the supremum over Y (n) before taking the lim sup as n → ∞
and on the right, we first take an ultralimit and then take the sup over the
choices of Y (n) and U .

The proof (on the next slide) is conceptually a diagonalization argument.
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Relationship with Shlyakhtenko’s entropy

The easier direction is χ(X | B) ≥ supU ,ι χ
U (X | B, ι).

Indeed, for each U and ι, we have χ(X | B) ≥ χU (X | B, ι) because the
measure of the relative microstate space for a particular choice of Y (n) is
less than or equal to the sup, and ultralimit is less than or equal to lim sup.

For the other direction, let Ok be a sequence of neighborhoods of
law(X,Y) in ΣR such that O0 = ΣR and Ok+1 ⊆ Ok and⋂

k∈NOk = {law(X,Y)}.
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Relationship with Shlyakhtenko’s entropy

Define A0 = N and for k ≥ 1,

Ak =

{
n ≥ k :

1

n2
log sup

Z(n)∈Γ(n)R (π2(Ok ))

vol(Γ
(n)
R (Ok | Z(n) ⇝ Y)) +m log n

> χR(X | Y)− 1

k

}
Note Ak+1 ⊆ Ak since Ok+1 ⊆ Ok and 1/k > 1/(k + 1).

Ak is nonempty by definition of χR(X | Y). But
⋂

k∈N Ak = ∅.

So ∃U ∈ βN \ N such that Ak ∈ U for all k .
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Relationship with Shlyakhtenko’s entropy

For each n ∈ Ak \ Ak+1, let Y
(n) ∈ Γ

(n)
R (π2(Ok)) such that

1

n2
log vol(Γ

(n)
R (Ok | Y(n) ⇝ Y)) +m log n > χR(X | Y)− 1

k
.

Note that limn→U law(Y(n)) = law(Y).

Using monotonicity, in fact for n ∈ Ak , the same inequality holds.

So

lim
n→U

1

n2
log vol(Γ

(n)
R (Ok | Z(n) ⇝ Y)) +m log n ≥ χR(X | Y)− 1

k
.

Taking the limit as k → ∞ gives us χU (X | B, ι) ≥ χ(X | B).
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Classical entropy

If X is a random variable in Rd with probability density ρ, then
h(X) = −

�
ρ log ρ dx .

Note if ρ dx is the uniform measure on a set S , then h(ρ) = log vol(S).
Also, an argument from Jensen’s inequality shows that this is the largest
entropy out of all probability measures supported on S .

In the non-conditional setting, Voiculescu’s microstate free entropy is
basically the limit of normalized classical entropies of uniform measures on
microstate spaces.

This leads to the principle that the microstate entropy is the supremum of
limits of classical entropies of random matrix models (J., appendix to
Shlyakhtenko and Tao’s paper). This will be a key ingredient in our
argument.

David Jekel and Jennifer Pi (UCSD) Elementary proof of χ ≤ χ∗ 2023-06-01 15 / 20



Classical entropy

Let us consider this in the conditional setting.

Recall that for random variable (X ,Y ) in Rd × Ω with
dµ(x , y) = ρ(x , y) dx dσ(y) the conditional entropy is defined as

h(X | Y ) =

�
Ω

(�
Rd

−ρ(x , y) log ρ(x , y) dx

)
dσ(y).

This is the average of the classical entropies of the conditional distribution
of X given Y.

If (X ,Y ) has the uniform distribution on some set S , then we get

h(X | Y )

�
Ω
log vol(Sy ) dσ(y).

Remark: Voiculescu’s conditional entropy is the limit of quantities like this.
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Classical entropy and free entropy

Now let’s state the relationship between conditional χ and classical
entropy. First, we handle χU (X | B, ι).

Proposition (J&P)

Suppose B = W∗(Y), and fix microstates Y(n) for Y which induce an
embedding ι. Then χU (X | B, ι) is the supremum of

lim
n→U

(
1

n2
h(X(n)) +m log n)

over all random matrix tuples X(n) satisfying

law(X(n),Y(n)) → law(X,Y) in probability as n → U .
limn→U∥X(n)∥∞ ≤ R in probability.

(Tail bound) There are C > 0 and K > 0 such that for n ∈ N,

P(∥X(n)∥2 ≥ C + δ) ≤ e−Kn2δ2 for all δ > 0.
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Classical entropy and free entropy

The reason we used (2) and (3) instead of just assuming it is bounded in
operator norm is that we want to apply this proposition to Gaussian
perturbations of our models. These will not be bounded in operator norm,
but will have good tail bounds like (3).

In order to show that for such X(n),

lim
n→U

(
1

n2
h(X(n)) +m log n

)
≤ χU (X | B, ι),

we estimate the contribution to h from the “tail” by a partitioning
argument. Then we compare the contribution from the part supported on
a microstate space by comparing with the uniform measure on the
microstate space.

For the other direction, we can find a sequence of random matrices whose
classical entropies realize χU (X | B, ι) by choosing uniform measures on
microstate spaces by a diagonalization argument.
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Classical entropy and free entropy

Now we get a similar characterization for χ(X | B).

Proposition (J&P)

Suppose B = W∗(Y). Then χU (X | B) is the supremum of

lim
n→U

(
1

n2
h(X(n) | Y(n)) +m log n)

over all random matrix tuples X(n),Y(n) satisfying

law(X(n),Y(n)) → law(X,Y) in probability as n → U .
limn→U∥(X(n),Y(n))∥∞ ≤ R almost surely.

(Tail bound) There are C > 0 and K > 0 such that for n ∈ N and for
all y ,

P(∥X(n)∥2 ≥ C + δ | Y(n) = y) ≤ e−Kn2δ2 for all δ > 0.
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Classical entropy and free entropy

We can deduce this from the previous statement. The ≤ argument is
based on the fact that for almost every choice of Y(n)’s, the X(n)’s
conditional distribution satisfies the hypotheses of the previous
proposition, and then we use a Fatou’s lemma argument.

The ≥ direction follows because taking Y(n) to be deterministic as in the
previous proposition is a valid choice satisfying the conditions in this
proposition too.
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