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Part 1

INTRODUCTION:
Random matrices and heat flow
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Random matrices: Circular law

Ginibre ensemble: N ×N matrix Z with indep. entries

Each entry complex Gaussian of mean 0, variance 1/N
When N is large, eigenvalues will be approx. uniform on unit disk:
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Random matrices: Circular law

Define (random) empirical eigenvalue measure of Z as

µN =
1

N

N

∑
j=1

δλj

where {λ1, . . . ,λN} are eigenvalues of Z

Theorem

The random probability measure µN converges weakly almost surely to the
uniform probability measure on unit disk
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Random matrices: Semicircular law

Gaussian unitary ensemble: N ×N Hermitian matrix with indep.
entries on and above diagonal, with Xkj = Xjk

Entries on diagonal are real Gaussian with mean 0, variance 1/N
Entries off diagonal are complex Gaussian with mean 0, variance 1/N
Eigenvalues approx. semicircular shape on [−2, 2]:
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Heat flow on polynomials: definition

Heat operator on polynomial p of degree N:

exp

{
τ

2N

d2

dz2

}
p(z) =

∞

∑
k=0

1

k !

( τ

2N

)k
(

d

dz

)2k

p(z), τ ∈ C,

Series terminates for all τ ∈ C

Will always put factor of N = deg(p) in denominator

This is natural scaling of time variable
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Heat flow on polynomials: evolution of zeros

Zeros zj (τ) satisfy

dzj
dτ

= − 1

N ∑
k : k ̸=j

1

zj (τ)− zk(τ)

Also
d2zj
dτ2

= − 2

N2 ∑
k : k ̸=j

1

(zj (τ)− zk(τ))3

Formula for second deriv. is rational Calogero–Moser system
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Backward heat flow and random matrices

Take Hermitian random matrix XN with

e.v. distribution → µ

Let pN be char. poly. of XN

Apply backward heat op. (τ = −t) to get poly. pNt

Pólya–Benz theorem [1934]: roots will remain real

Theorem (Kabluchko)

Empirical measure of zeros of pNt approach free additive convolution:

µ ⊞ (semi. circ. measure on [−2
√
t, 2

√
t])

Result of Kabluchko using “finite free convolution” of Marcus, Spielman,
Srivastava
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Backward heat flow and random matrices

Free convolution: computes limiting e.v. distribution of sums of
indep. Hermitian random matrices

Hence: zeros of pNt resemble e.v. of XN +
√
t GUE

Random matrix interpretation to backward heat op on polynomials
with real roots: like adding a GUE!

Example: backward heat flow on char. poly. GUE gives semicirc.
distrib. on [−2

√
1+ t, 2

√
1+ t]

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
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Forward heat flow and random matrices

Question

What happens if we apply forward heat operator (τ = t) to characteristic
polynomial of GUE? Can we just replace t by −t in preceding result
(shrinking semicircle)?

Let’s see!
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Forward heat flow and random matrices
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Forward heat flow and random matrices

Apply forward heat op. (τ = t) to char. poly. of GUE

Zeros become complex even for small t if N is large

Conjecture (Hall–H0, ’22)

For 0 < t < 2, get uniform distrib. on ellipse with semi-axes 2− t and t.
E.g., with t = 1, get uniform distribution on disk: semicircular becomes
circular!
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Example: Semicircular to circular

Forward heat op. for time τ = 1 starting from char. poly. GUE

Approx. uniform on unit disk—but not same distrib. as e.v. of Ginibre
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Why does result for backward heat operator not extend?

Method of Marcus–Spielman–Srivastava uses expected char. poly.

Expectation value of (forward heat op.)(char. poly. GUE) is scaled
Hermite polynomial

Zeros of expected polynomial will have shrinking semicircular
distribution

But this does not tell you about zeros without expectation
value—unless zeros are real

Later: use expectation value of absolute value squared of char.
poly.
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Heat flow and random matrix theory

Goal

Identify examples in which applying heat operator to characteristic
polynomial of one random matrix model gives new polynomial whose
zeros resemble the eigenvalues of a second random matrix model.

Goal

Develop general theory of how zeros of polynomials evolve under heat
flow, apart from connections to random matrix theory.
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PART 2

MODEL DEFORMATION PHENOMENON
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The relationship between circular and semicircular laws

Twice the real part of the eigenvalues in the circular law has the same
bulk distribution as the eigenvalues in the semicircular law

Trivial from the formulas but: why is it true?

Why are real parts of eigenvalues in one model related to the
eigenvalues in different model?

Circular-semicircular Challenge

Explain the relationship between limiting e.v. distributions of Ginibre
ensemble and GUE without using the circular and semicircular laws.
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Generalizing: Hermitian plus elliptic model

RMT: Let X and Y be independent GUE’s, set

Z = e iθ(aX + ibY )

Free prob.: take X , Y freely indep. semicircular elements

Limiting e.v. distribution/Brown measure is uniform on ellipse:
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Parameters for elliptic model

Use parameters s ∈ R and τ ∈ C

s = E

{
1

N
trace(Z ∗Z )

}
(variance)

τ = E

{
1

N
trace(Z ∗Z )

}
− E

{
1

N
trace(Z 2)

}
Special cases: τ = 0 is Hermitian, τ = s is circular

From Cauchy–Schwarz: |τ − s | ≤ s

s 2s

τ
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Elliptic plus Hermitian model

Label elliptic element as Zs,τ; consider

X0 + Zs,τ

where X0 is Hermitian, indep. of Zs,τ

Let µ be limiting e.v. distribution of X0

Additive case of work of Hall–Ho [2021]; results of Zhong [2021]
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Elliptic plus Hermitian model

Theorem (Hall–Ho; Zhong)

Limiting e.v. distribution of µs,τ of X0 + Zs,τ is supported on explicitly
computable domain Ωs,τ and density of µs.τ is constant (in Ωs,τ) in the
iτ direction.

Example: X0 is Bernoulli: µ is half sum of δ-measures at ±1

s = 1, τ = 1+ i/2
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“Model deformation” result: vary τ with s fixed

Fix s and X0, take τ0 and τ

Theorem (Hall–Ho; Zhong)

There is a canonical map Φs,τ0,τ such that push-forward of Brown measure
of X0 + Zs,τ0 by Φs,τ0,τ equals Brown measure of X0 + Zs,τ.

Bernoulli case with s = 1, τ0 = 1, and τ = 1+ i/2

Brian C. Hall Heat flow on polynomials April 2023 Berkeley 22 / 60



Pictorial description of map

Map takes segments in iτ0-direction to segments in iτ-direction

Φs,τ0,τ(z) is linear in τ for fixed z

Bernoulli case with s = 1, τ0 = 1, and τ = 1+ i/2
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HOW to vary τ with s fixed?

Considering Zs,τ with fixed s and different values of τ

Cannot change τ with s fixed by adding an indep. matrix ∆Z

s is variance and variances add!

Can decrease variance in Hermitian directions and increase variance in
skew-Hermitian directions

Fiction: Add an element of form X−r + iYr , semicircular with
variances −r and r

Makes sense on element of form W + X̃t , goes to W + X̃t−r + iYr

Brian C. Hall Heat flow on polynomials April 2023 Berkeley 24 / 60



Circular–semicircular case

Take X0 = 0, with s = 1

Take τ0 = 1 (circular) and τ = 0 (semicircular)

Map Φs,τ0,τ gives circular-to-semicircular map:

Φs,τ0,τ(z) = 2Re(z)

Conclusion

The map z 7→ 2Re(z) relating circular to semicircular laws is just one
special case of a large family of maps with similar results.
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PDE Method

PDE method for proving these results

Proposition (Hall–Ho, 2023)

Log potential S(z , s, τ) of Brown measure µs,τ satisfies a PDE w.r.t. τ
with s fixed:

∂S

∂τ
=

1

2

(
∂S

∂z

)2

.

Here S is real-valued, τ and z are complex variables

Derivatives are complex partial derivatives (Cauchy–Riemann
operators)
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Multiplicative models

Gaussian models: sums of i.i.d. matrices

Also consider products of i.i.d. matrices close to identity

Take

Bs,τ =
k

∏
j=1

(
I +

i√
k
Z j
s,τ −

1

2k
(s − τ)I

)
, k ≫ 1,

where Z j
s,τ’s are independent copies of Zs,τ

Or: solve free SDE driven by elliptic Brownian motion:

dBs,τ(t) = Bs,τ(t)

(
i dZs,τ(t)−

1

2
(s − τ)dt

)
then set t = 1
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Multiplicative models

Then take U unitary, indep. of Bs,τ and consider

UBs,τ

Limiting e.v. distribution of UBs,τ computed in increasing generality
by Driver–Hall–Kemp, Ho–Zhong, Hall–Ho

Example: Law of U at ±1 and ±i with s = 1, τ = 1+ i/2
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Relating models with different values of τ

Theorem (Hall–Ho, 2023)

“Model deformation” holds in the multiplicative case.

Fix s and U, relate different values of τ with map
Example: s = 1, τ0 = 1, τ = 1+ i/2
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PART 3

HEAT FLOW CONJECTURE FOR RANDOM MATRICES
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Idea of heat flow conjecture

Idea

Transformation between random matrices with different values of τ can be
accomplished by applying heat operator to characteristic polynomial
of one model.
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Heat flow

Fix X0 and s, take τ0 and τ

Set pN0 = char. poly. of X0 + Zs,τ0

Set pN = char. poly. of X0 + Zs,τ

Set

qN(z) = exp

{
τ − τ0
2N

∂2

∂z2

}
pN0 (z)

Conjecture (Hall–Ho)

The empirical measure for zeros of qN converges weakly almost surely to
the same limit as for zeros of pN—namely, limiting e.v. distrib. of
X0 + Zs,τ.
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Heat flow

pN is char. poly. of random matrix with parameter τ

qN : start with char. poly. of random matrix with parameter τ0, apply
heat flow for time τ − τ0

Conjecture: zeros of qN ≈ zeros of pN

Heat flow for time τ − τ0 changes from τ0 to τ
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Bernoulli case
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Circular to semicircular case

Take X0 = 0, s = 1

Take τ0 = 1 (circular) and τ = 0 (semicircular)

Roots of

qN := exp

{
− 1

2N

∂2

∂z2

}
pN0

approximate semicircular distribution on [−2, 2]
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Trajectories in circular to semicircular case

Put t in exponent with 0 ≤ t ≤ 1

Zeros move in approx. straight lines z 7→ z + tz̄

Motion reflects that Φs,τ0,τ(z) is linear in τ for fixed z

Point starting at z ends close to 2Re(z)
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Semicircular to circular case (τ0 = 0, τ = 1)

Points move in approx. straight lines

Velocity in x-direction determined by initial x-value

Velocity in y -direction random

Points starting near given x-value end up on vertical line
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Forward heat flow and random matrices
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Multiplicative case

Similar results, with heat operator replaced by

exp

{
−τ − τ0

2N

(
z2

∂2

∂z2
− (N − 2)z

∂

∂z
−N

)}
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Part 4

GENERAL HEAT FLOW CONJECTURE
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General conjecture

Let pN0 be deg.-N polynomials s.t. empirical measure of zeros
converges to “nice” measure µ

Define

pN(τ, z) = exp

{
τ

2N

d2

dz2

}
pN0 (z)

Conjecture

For sufficiently small |τ|, the empirical measure of zeros of pN(τ, z)
converges to measure µτ whose log potential S(τ, z) satisfies

∂S

∂τ
=

1

2

(
∂S

∂z

)2

.
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Notes

S is real-valued but τ and z are complex variables

∂/∂τ and ∂/∂z are complex partial deriv. (Cauchy–Riemann ops.)

Polynomials needn’t come from random matrices

There is multiplicative version of conjecture

Solution S can degenerate; can’t expect C 1 solution for all τ

Expect straight-line motion for small τ:

z 7→ z + τ
∂S(0, z)

∂z
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Formal argument

Define log potential of zeros {z j (τ)}Nj=1 of pN(τ, z)

SN(τ, z) =
1

N

N

∑
j=1

log(|z − zj (τ)|2)

Proposition

The log potential of the zeros SN satisfies the PDE

∂SN

∂τ
=

1

2

(
∂SN

∂z

)2

+
1

2N

∂2SN

∂z2

away from the zeros.

But: this is not viscosity approx. to PDE in conjecture
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Part 5

SUPPORTING THE CONJECTURES:
Rigorous results

Brian C. Hall Heat flow on polynomials April 2023 Berkeley 44 / 60



First Rigorous Result: Second moments of char. poly.

Fix X0 and s, take τ0 and τ

Set pN0 = char. poly. of X0 + Zs,τ0

Set pN = char. poly. of X0 + Zs,τ

Set

qN(z) = exp

{
τ − τ0
2N

∂2

∂z2

}
pN0 (z)

Goal: Show pN and qN have similar bulk distribution of zeros
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First Rigorous Result: Second moments of char. poly.

Theorem (Hall–Ho)

For all z ∈ C, we have

E
{
|qN(z)|2

}
= E

{
|pN(z)|2

}
Proof.

Both sides satisfy the PDE

∂u

∂τ
=

1

2N

∂2u

∂z2

with equality at τ = τ0.
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Significance of the second moment

If p is a degree-N polynomial,

empirical measure of zeros of p =
1

4πN
∆ log(|p(z)|2)

Assume concentration—|pN(z)|2 ≈ E{|pN(z)|2}
Then can freely insert a expectation:

empirical measure of zeros of pN ≈ 1

4πN
∆ log(E{|pN(z)|2})

Conclusion: Hope to recover zeros of pN and qN from second
moments—which are equal!
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Second rigorous result: Polynomials with independent
coefficients

Work in progress with Ho, Jalowy, and Kabluchko

Kabluchko and Zaporozhets have analyzed wide class of polynomials
with independent coefficients

Apply (backward) heat operator for time t

First: extend KZ results by applying heat flow to the polynomials

Second: Verify that results agree with general heat flow conjecture
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Second rigorous result: Polynomials with independent
coefficients

Theorem (Hall–Ho–Jalowy–Kabluchko, 2023+)

1 Log potential S of limiting zero-distribution of heat-evolved KZ
polynomials satisfies the PDE

∂S

∂τ
=

1

2

(
∂S

∂z

)2

2 The limiting zero-distribution at time τ is push-forward of distribution
at time 0 under an explicit transport map Tt
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Weyl polynomials: Rigorous circular-to-semicircular result

Consider Weyl polynomials WN :

WN(z) =
N

∑
j=0

ξj
(
√
Nz)j√
j !

,

where {ξj} are i.i.d. standard complex Gaussians

Limiting distribution of zeros is uniform on unit disk (circular law)

Transport map is
Tt(z) = z + tz̄

Limiting distrib. of zeros of heat-evolved poly. is uniform on ellipse
for 0 < t < 1

Limiting distrib. is semicircular on [−2, 2] for t = 1
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Littlewood–Offord polynomials

Start from Littlewood–Offord poly. with β = 1/4
Distrib. at t = 0 is quadratic on unit disk
Push forward by explicit map Tt of disk to ellipse
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Third rigorous result: Gaussian Analytic Function (GAF)

GAF is “infinite Weyl polynomial” (without factor of
√
N)

Definition

The GAF is the random entire function given by

∞

∑
j=0

ξj
z j√
j !

where {ξn} are i.i.d. standard complex Gaussians.
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Zeros of GAF

Zeros of GAF form an interesting random set of points in the plane

Zeros are invariant (in distrib.) under rotations and translations
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GAF under heat flow

Makes sense to apply e
τ
2

d2

dz2 to G , if |τ| < 1

Theorem (Hall–Ho–Jalowy–Kabluchko, 2023+)

For all τ ∈ C with |τ| < 1 the function

(VτG )(z) := (1− |τ|2)1/4e−
τ
2 z

2

(
e

τ
2

d2

dz2 G

)(√
1− |τ|2 z

)
has the same distribution as G .

Hence: GAF remains invariant in distribution under heat flow, up to
some simple transformations
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Zeros of GAF under heat flow

Constant and Gaussian factor don’t affect zeros

Corollary

If zj (τ) are zeros of e
τ
2

d2

dz2 G , then{
zj (τ)√
1− |τ|2

}

have same distribution as zeros of G (for |τ| < 1).

So we understand how zeros of an “infinite-degree random
polynomial” transform under heat flow!

Exact result at level of individual zeros (not just bulk level)
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GAF: dynamics of individual zeros

Zeros zj (τ) tend to move along straight lines: z 7→ z − τz̄
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GAF: dynamics of individual zeros

Let G a denote GAF G conditioned to have a zero at a ∈ C

Let za(τ) denote the zero of e
τ
2

d2

dz2 G a that starts at a

Theorem (Hall–Ho–Jalowy–Kabluchko, 2023+)

We have the following equality in distribution:

za(τ)
d
= a− τā+ z0(τ)

z0(τ) is a fixed random variable with distrib. indep. of a

Result says that zero evolves in straight line, plus “order 1” error
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GAF: dynamics of individual zeros

Plots of zeros with straight-line motion subtracted off

I.e., plot zj (τ)− (zj (0)− τzj (0))

All points then move with same scale
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Conclusion

THANK YOU FOR YOUR ATTENTION
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