Methods of holomorphic dynamics in the study of branching processes

Pavel Gumenyuk (Politecnico di Milano, Italy)

based on a joint work (still in progress) with *T. Hasebe* (Hokkaido University, Japan) and *J. L. Pérez* (Centro de Investigación en Matemáticas, Mexico)

Probabilistic Operator Algebra Seminar University of California, Berkeley — June 5, 2023

Outline of the talk

- Simplest example: Galton Watson processes
- Continuous-time inhomogeneous processes and evolution families of holomorphic self-maps
- Loewner's Parameteric Representation method

in Conformal Mapping

- Modern Loewner Theory due to F. Bracci, M.D. Contreras, and S. Díaz-Madrigal
- REMARK: evolution families in Quantum Probabilities
- CB-processes and evolution families of Bernstein functions
- Differentiability problem
- Probabilistic interpretation of the Denjoy Wolff point
- Spatial embedding

Introduction - 1 -

Galton – Watson process

is a Markov chain (X_n) , where X_n is the *number of identical "particles"* in the *n*-th generation, $X_0 = 1$.

Each particle splits giving rise to $k \in \mathbb{N}_0$ offsprings with probability p(k) independently from others (and prehistory).

Probability generating function $F(z) := \mathbb{E}[z^{X_1}] = \sum_{k=0}^{+\infty} p(k) z^k$

is a holomorphic self-map of $\mathbb{D} := \{z : |z| < 1\}$ with a *boundary fixed* point at 1 (except for the degenerate case p(0) = 1, p(k) = 0, $k \in \mathbb{N}$).

Relation to Dynamics:

If p(k)'s do not change in time, then the probability distribution of X_n is given by the Taylor coefficients of the *n*-th iterate of the function *F*,

$$F^{\circ n} := F \circ \ldots \circ F \colon \mathbb{D} \to \mathbb{D}.$$

n times

Introduction - 2 -

Galton – Watson process contin's-time, inhomogen's

To a Galton – Watson process with continuous time one associates the family

 $(F_t)_{t\in\mathbb{R}_{\geq 0}}\subset \operatorname{Hol}(\mathbb{D},\mathbb{D}), \quad F_t(z):=\mathbb{E}[z^{X_t}]$

(i) $F_0 = \operatorname{id}_{\mathbb{D}};$

(ii) $F_t \circ F_s = F_{t+s}$ for any $t, s \in \mathbb{R}_{\geq 0}$;

Under a mild continuity assumption on the transition probabilities $p_{s,t}(k)$:

(iii) as $t \to 0^+$, $F_t \to id_{\mathbb{D}}$ pointwise and hence locally uniformly in \mathbb{D} .

A family $(F_t)_{t \in \mathbb{R}_{\geq 0}} \subset \text{Hol}(\mathbb{D}, \mathbb{D})$ satisfying (i) – (iii) is usually called a *one-parameter semigroup* in \mathbb{D} .

Time-inhomogeneous case

Prob'ty generating f'ns: $(F_{s,t})_{t \ge s \ge 0} \subset \text{Hol}(\mathbb{D}, \mathbb{D}), F_{s,t}(z) := \mathbb{E}\left[z^{X_t} \mid X_s = 1\right],$

(i) $F_{s,s} = id_{\mathbb{D}}$ for any $s \ge 0$;

(ii) $F_{s,u} \circ F_{u,t} = F_{s,t}$ whenever $0 \le s \le u \le t$;

Again, under a mild continuity assumption on $p_{s,t}(k)$'s:

(iii) { $(s, t) \in \mathbb{R}_{\geq 0} : s \leq t$ } =: $\Delta \ni (s, t) \mapsto F_{s,t} \in Hol(\mathbb{D}, \mathbb{D})$ is continuous.

Introduction - 3 -

A family $(F_{s,t})_{(s,t)\in\Delta} \subset \operatorname{Hol}(\mathbb{D},\mathbb{D})$ is said to be a *topological <u>reverse</u> evolution family* if the above 3 conditions hold: (i) $F_{s,s} = \operatorname{id}_{\mathbb{D}}$; (ii) $F_{s,u} \circ F_{u,t} = F_{s,t}$ whenever $0 \leq s \leq u \leq t$; (iii) $(s,t) \mapsto F_{s,t}$ is continuous.

Special feature of the homogeneous case (E. Berkson, H. Porta, 1978)

If (F_t) is a one-parameter semigroup, then

$$dF_t(z)/dt = G(F_t(z)), \ t \ge 0, \quad F_0(z) = z,$$
 (*)

for a suitable $G \in Hol(\mathbb{D}, \mathbb{C})$ called the *infinitesimal generator* of (F_t) .

The infinitesimal generators form a convex cone $\text{Gen}(\mathbb{D}) \subset \text{Hol}(\mathbb{D},\mathbb{C})$.

Inhomogeneous extension of (*) [from the Dynamics viewpoint]

 $dF_{s,t}(z)/dt = G(F_{s,t}(z),t), t \ge s \ge 0, \quad F_{s,s}(z) = z;$

 $G(\cdot, t) \in \text{Gen}(\mathbb{D})$ for a.e. $t \ge 0$. [(Generalized) Loewner-Kufarev ODE]

Introduction - 4 -

The Loewner – Kufarev ODE generates absolutely continuous evolution families:

 $(F_{s,t}) \subset \operatorname{Hol}(\mathbb{D},\mathbb{D})$

(i) $F_{s,s} = id_{\mathbb{D}}$; (ii) $F_{u,t} \circ F_{s,u} = F_{s,t}$ whenever $0 \le s \le u \le t$; (iii) stronger than continuity of $(s, t) \mapsto F_{s,t}$.

© One-parameter semigroups: E. Schröder, 1871; G. Koenigs, 1884; E. Berkson, H. Porta, 1978:

 $G \in \operatorname{Gen}(\mathbb{D}) \quad \Longleftrightarrow \quad G(z) = (\tau - z)(1 - \overline{\tau}z)p(z), \, \tau \in \overline{\mathbb{D}}, \, \operatorname{Re} p \ge 0.$

Second termination Second Seco

 $S := \{ f : \mathbb{D} \to \mathbb{C} \text{ injective holomorphic with } f(z) = z + a_2 z^2 + ... \}$

A dense subclass S_{s1} is formed by *slit mappings*, i.e. by those $f \in S$ for which $\Gamma := \overline{\mathbb{C}} \setminus f(\mathbb{D})$ is a Jordan arc with one end-point at ∞ .

Introduction - 5 - Loewner's Construction

THEN: $\varphi_{s,t} := f_t^{-1} \circ f_s \in \text{Hol}(\mathbb{D}, \mathbb{D}), \quad 0 \leq s \leq t,$ are C^1 in (s, t) and form an evolution family $(\varphi_{s,t})$.

Theorem (Ch. Loewner, 1923) f, (f_t), ($\varphi_{s,t}$) as above

∃! continuous function ξ : $[0, +\infty) \rightarrow \partial \mathbb{D}$ s.t. for any $z \in \mathbb{D}$ and $s \ge 0$, $w = w_{z,s}(t) := \varphi_{s,t}(z)$ solves the IVP for the *Loewner ODE*

$$\frac{\mathrm{d}w}{\mathrm{d}t} = -w \frac{1 + \overline{\xi(t)}w}{1 - \overline{\xi(t)}w}, \quad t \ge s; \qquad w(s) = z.$$

Moreover,

$$f_{s} = \lim_{t \to +\infty} e^{t} \varphi_{s,t}$$
 for

or any $s \ge 0$. **NB:** $f = f_0$

NB: a sort of converse is also true R parametric representation of S', $S_{s1} \subset S' \subset S$.

Extension to the whole class S: the classical Loewner-Kufarev ODE P. P. Kufarev, 1943; Ch. Pommerenke, 1965; V. Ja. Gutljanskii, 1970: $\frac{dw}{dt} = -w(t) p(w(t), t), \quad t \ge s; \qquad w(s) = z;$ Re $p \ge 0, p(0, t) = 1$, measurable in t, not C^1 — Carathéodory's ODE!

Introduction - 7 - Chordal Loewner ODE

Hydrodynamic normalization:
$$\begin{split} f_t(\zeta) &= \zeta - \frac{c(t)}{\zeta} + o(1/\zeta) \quad \text{(HD)} \\ \text{as } \mathbb{H} \ni \zeta \to \infty, \, c(t) \geqslant 0; \end{split}$$

The evolution family

$$\varphi_{s,t} := H^{-1} \circ (f_t^{-1} \circ f_s) \circ H,$$

$$\mathbb{D} \ni \mathbf{Z} \mapsto \zeta = \mathbf{H}(\mathbf{Z}) := \mathbf{i}_{1-\mathbf{Z}}^{1+\mathbf{Z}},$$

satisfies the chordal $L_{-}K_{-}ODE$

$$\mathrm{d}w/\mathrm{d}t = (1-w)^2 p(w,t).$$

Berkson-Porta: $G(z) = (\tau - z)(1 - \overline{\tau}z)p(z)$, $\operatorname{Re} p \ge 0, \tau \in \overline{\mathbb{D}}$.

The r. h. s.'s $G_{cla}(w,t) = -w p(w,t)$ and $G_{cho} = (1-w)^2 p(w,t)$ are *t*-dependent infinitesimal generators, with $\tau := 0$ and $\tau := 1$.

Modern Loewner Theory - 8 -

Denjoy – Wolff point

What is the meaning of τ in B.–P.'s $G(z) = (\tau - z)(1 - \overline{\tau}z) p(z)$?

Theorem (Denjoy and Wolff)

 $\forall \varphi \in Hol(\mathbb{D}, \mathbb{D}) \setminus \{id_{\mathbb{D}}\}, \exists ! \tau \in \overline{\mathbb{D}}, called the Denjoy-Wolff point of \varphi, s.t.:$

• if $\tau \in \mathbb{D}$, then $\varphi(\tau) = \tau$, and $\varphi^{\circ n} \xrightarrow{n \to +\infty} \tau$ l.u. in \mathbb{D} if $\varphi \notin Aut(\mathbb{D})$;

• if
$$\tau \in \partial \mathbb{D}$$
, then $\angle \lim_{z \to \tau} \varphi(z) = \tau$ and $\varphi^{\circ n} \xrightarrow{n \to +\infty} \tau$ l.u. in \mathbb{D} .

Convention: for $\varphi = id_{\mathbb{D}}$, every $\tau \in \overline{\mathbb{D}}$ is its DW-point.

- The point τ in B.– P.'s formula is the DW-point of all ϕ_t 's in the one-parameter semigroup $(\phi_t) \sim G$.
- $\begin{tabular}{ll} $\tau=0$ is the DW-point of evolution families $(\varphi_{s,t})$ in Loewner's classical construction. \end{tabular} \end{tabular}$

I $\tau = 1$ is the DW-point in the chordal version of Loewner's const'n.

Modern Loewner Theory - 9 - Herglotz vector fields

In 2012, F. Bracci, M.D. Contreras, and S. Díaz-Madrigal proposed

generalized L.–K. ODE:
$$\frac{dw}{dt} = G(w(t), t), \quad t \ge s; \quad w(s) = z \in \mathbb{D},$$

with $G(z,t) := (\tau(t) - z)(1 - \overline{\tau(t)}z)p(z,t)$, $\operatorname{Re} p \ge 0, \tau : [0, +\infty) \to \overline{\mathbb{D}}$.

More precisely, they assumed that *G* is a Herglotz vector field: a function $G : \mathbb{D} \times [0, +\infty) \to \mathbb{C}$ is called a *Herglotz vector field*, if: HVF1: for a.e. $t \ge 0$, $G(\cdot, t) \in \text{Gen}(\mathbb{D})$; HVF2: for each $z \in \mathbb{D}$, $G(z, \cdot)$ is measurable on $[0, +\infty)$;

 \mathbb{C} in each $\mathbb{Z} \subset \mathbb{D}$, $\mathbb{C}(\mathbb{Z}, \mathbb{C})$ is measurable on [0

HVF3: for each compact $K \subset \mathbb{D}$,

 \exists a loc. integrable $M : [0, +\infty) \rightarrow [0, +\infty)$ s.t.

 $\max_{\kappa} \left| G(\cdot,t) \right| \ \leqslant \ M(t) \quad \text{for a.e. } t \ge 0.$

F. Bracci, M.D. Contreras, and S. Díaz-Madrigal proved that the generalized Loewner – Kufarev ODE establishes a one-to-one correspondence

between Herglotz vector fields and abs. continuous evolution families:

 $\begin{aligned} (\varphi_{s,t})_{t \ge s \ge 0} \subset \operatorname{Hol}(\mathbb{D}, \mathbb{D}) \text{ is an } \underline{absolutely \ continuous \ evolution \ family \ if:} \\ \mathsf{EF1:} \ \varphi_{s,s} = \operatorname{id}_{\mathbb{D}} \text{ for all } s \ge 0; \quad \mathsf{EF2:} \ \varphi_{s,t} = \varphi_{u,t} \circ \varphi_{s,u}, \ 0 \le s \le u \le t; \\ \mathsf{EF3:} \ \text{for every} \ z \in \mathbb{D}, \ \exists \text{ a locally integrable} \ k_z : [0, +\infty) \to [0, +\infty) \text{ s.t.} \\ \left| \varphi_{s,t}(z) - \varphi_{s,u}(z) \right| \le \int_{u}^{t} k_z(v) \, \mathrm{d}v \quad \text{whenever} \ 0 \le s \le u \le t. \end{aligned}$

If EF2 is replaced by $\varphi_{s,t} = \varphi_{s,u} \circ \varphi_{u,t}$, then we get the definition of an (absolutely continuous) *reverse* evolution family.

If EF3 is replaced by (joint) continuity in (s, t), then we talk about *topological* (reverse) evolution families.

$EFs \leftrightarrow reverse EFs$

 $(\varphi_{s,t})$ is an (AC or topological) *reverse* evolution family iff

 $\forall T > 0, \quad (\psi_{s,t}^{T}) : \quad \psi_{s,t}^{T} = \varphi_{u_{T}(t), u_{T}(s)}, \text{ where } u_{T}(t) := \max \{T - t, 0\},$ is a evolution family (AC or topological, resp.)

Theorem (Bracci, Contreras, Díaz-Madrigal)

• Let G be a Herglotz vector field. Then $\forall z \in \mathbb{D} \ \forall t > 0$, the IVP dw/ds = -G(w(s), s) a.e. $s \in [0, t];$ $w|_{s=t} = z.$ (*)

has a unique solution $w = w_{z,t} : [0, t] \to \mathbb{D}$,

and $(\varphi_{s,t})$, $\varphi_{s,t}(z) := w_{z,t}(s)$, is an AC reverse evolution family.

• Conversely, any AC reverse evolution family $(\varphi_{s,t})$ is generated in the above sense by a corresponding Herglotz vector field *G* [unique up to a null-set on the *t*-axis].

A remark - 12 -

on parabolic evolution families

A self-map $\varphi \in Hol(\mathbb{D}, \mathbb{D})$ is called *parabolic* if its DW-point $\tau \in \partial \mathbb{D}$ and $\varphi'(\tau) := \angle \lim_{z \to \tau} \frac{\varphi(z) - \tau}{z - \tau} = 1.$

For a self-map $\Phi \in Hol(\mathbb{H}, \mathbb{H})$, $\mathbb{H} := \{\zeta : Im \zeta > 0\}$, this translates to

$$\angle \lim_{\zeta \to \infty} \Phi(\zeta) / \zeta = 1 \quad \Longleftrightarrow \quad \frac{1}{\Phi(\zeta) - x} = \int_{\mathbb{R}} \frac{k(x; dy)}{\zeta - y}, \ x \in \mathbb{R}, \ (*)$$

for some (uniquely determined) Borel probability measures $k(\mathbf{x}; \cdot)$ on \mathbb{R} .

R.O. Bauer, 2004:

Every reverse EF of parabolic self-maps of $\Phi_{s,t} : \mathbb{H} \to \mathbb{H}$ \longrightarrow a family $(k_{s,t})$ of transition kernels of a Markov process. Relation $\Phi_{s,u} \circ \Phi_{u,t} = \Phi_{s,t}$ is \iff to Chapman–Kolmogorov.

U. Franz, T. Hasebe, S. Schleißinger, 2020 [100+ page paper]: a complete characterization and a 1-to-1 correspondence with SAIPs.

Continuous-state branching processes - 13 -

Continuous-state branching processes (CB-processes for short)

are Markov stochastic processes analogous to Galton–Watson processes but with the state space $[0, +\infty]$. Their transition kernels

 $k_{s,t}: [0, +\infty] \times \mathcal{B}([0, +\infty]) \rightarrow [0, 1], \quad 0 \leq s \leq t,$ satisfy

the branching property: $k_{s,t}(\mathbf{x}; \cdot) * k_{s,t}(\mathbf{y}; \cdot) = k(\mathbf{x} + \mathbf{y}; \cdot), \quad \mathbf{x}, \mathbf{y} \ge 0.$

Branching property \Leftrightarrow the Laplace transform of $k_{s,t}(x, \cdot)$ is of the form $\mathcal{L}[k_{s,t}(x; \cdot)](\lambda) := \int_{0}^{+\infty} e^{-\lambda\xi} k_{s,t}(x; d\xi) = \exp(-\varphi_{s,t}(\lambda)x), \quad x, \lambda \in (0, +\infty),$

where $\varphi_{s,t}$, referred to as the Laplace exponent, is a *Bernstein function*, i.e. non-negative C^{∞} -function in $(0, +\infty)$ with $(-1)^{n-1}\varphi_{s,t}^{(n)} \ge 0$, $n \in \mathbb{N}$.

Every Bernstein function $\neq 0$ is a restriction of a *holomorphic* self-map $\varphi : \mathbb{H}_r \to \mathbb{H}_r := \{z \in \mathbb{C} : \operatorname{Re} z > 0\};$

 $\mathfrak{B} \mathfrak{F} := \left\{ \begin{array}{ll} \text{Bernstein functions } \varphi \not\equiv 0 \end{array} \right\} \text{ is closed w.r.t. } \circ \circ \\ \text{ and also topologically closed in } \text{Hol}(\mathbb{H}_r, \mathbb{H}_r). \end{array}$

CB-processes - 14 -

time homogeneous and inhomogeneous

Time-homogeneous case: $k_{s,t} = k_{0,t-s}$, $\varphi_{s,t} = \varphi_{0,t-s}$

The Laplace exponents $\phi_t := \varphi_{0,t-s}$ form a one-parameter semigroup in \mathfrak{BF} .

▶ M. Jiřina, 1958 ▶ M.L. Silverstein, 1968: Gen[𝔅𝔅]

$$G(\zeta) = q + a\zeta - b\zeta^2 + \int_0^{+\infty} \left(1 - e^{-x\zeta} - x\zeta \mathbf{1}_{(0,1)}(x)\right) \pi(\mathrm{d}x), \ \zeta \in \mathbb{H}_r,$$

where $a \in \mathbb{R}$, $q, b \ge 0$ and π is a Borel non-negative measure on $(0, +\infty)$ satisfying $\int_{0}^{+\infty} \min\{x^2, 1\} \pi(dx) < +\infty$ (*)

The corresp'nce between $\phi \in \text{Gen}[\mathfrak{B}\mathfrak{F}]$ and quadruples (q, a, b, π) is 1-to-1.

Inhomogeneous case ("varying environments")

- V. Bansaye, F. Simatos, 2015
- R. Fang, Z. Li, 2022: constructing CB-processes via an integral eq'n for the Laplace exponents φ_{s,t}. But no Complex Analysis so far!

CB-processes - 15 -

inhomogeneous case; complex-analytic tools

Joint results with Takahiro Hasebe (Hokkaido Univ., Japan) and José Luis Pérez (CIMAT, México): arXiv:2206.04753, arXiv:2211.12442.

$$\mathcal{L}[k_{s,t}(\mathbf{x};\cdot)](\lambda) = \exp\left(-\varphi_{s,t}(\lambda)\mathbf{x}\right), \quad \mathbf{x}, \lambda \in (0, +\infty).$$
(*)

The Chapman-Kolmogorov equation:

$$k_{s,t}(x;\cdot) = \int_{[0,+\infty]} k_{s,u}(x; dy) k_{u,t}(y;\cdot), \quad 0 \leq s \leq u \leq t,$$

CB-processes - 16 -

with absolutely continuous REFs

- IN Homogeneous case: continuity \Rightarrow differentiability in t.
- Inhomogeneous case: "AC" is *stronger* than "topological".

Assume that $(\varphi_{s,t})$ is an AC reverse evolution family in \mathbb{H}_r .

Problem

Characterize Herglotz vector fields $G : \mathbb{H}_r \times [0, +\infty) \to \mathbb{C}$ whose REFs $(\varphi_{s,t}) \subset \mathfrak{B}_{\mathfrak{F}}$.

General Theorem (T. Hasebe, J.L. Pérez, P.G., 2022) Let $\mathfrak{S} \subset \operatorname{Hol}(D, D), D \in \{\mathbb{D}, \mathbb{H}, \mathbb{H}_r\}$. Denote by Gen[\mathfrak{S}] the set of all inf. gen'tors *G* such that $(\phi_t^G) \subset \mathfrak{S}$. Suppose: (i) \mathfrak{S} is closed w.r.t. $\cdot \circ \cdot$ and $\operatorname{id}_D \in S$; (ii) \mathfrak{S} is (topogically) closed in $\operatorname{Hol}(D, D)$. Then: Gen[\mathfrak{S}] is closed cone in $\operatorname{Hol}(D, \mathbb{C})$. Moreover, $(\varphi_{s,t}^G) \subset \mathfrak{S} \iff G(\cdot, t) \in \operatorname{Gen}[\mathfrak{S}]$ for a.e. $t \ge 0$.

CB-processes - 17 -

characterization of Herglotz vector fields

Recall Silverstein's representation formula for $G \in \text{Gen}[\mathfrak{B}\mathfrak{F}]$: $G(\zeta) = q + a\zeta - b\zeta^2 + \int_0^{+\infty} (1 - e^{-x\zeta} - x\zeta \mathbf{1}_{(0,1)}(x)) \pi(dx), \ \zeta \in \mathbb{H}_r,$ where $a \in \mathbb{R}, \ q, b \ge 0$, and $\int_0^{+\infty} \min\{x^2, 1\} \pi(dx) < +\infty$. T. Hasebe, J.L. Pérez, P.G.: (less technical) Complex-analytic proof.

A family $(q_t, a_t, b_t, \pi_t)_{t \ge 0}$ is said to be a *Lévy family* if: (a) $a_t \in \mathbb{R}, q_t, b_t \ge 0$, and π_t are a non-negative Borel measures on $(0, +\infty)$; (b) $t \mapsto \pi_t(B)$ is measurable for any Borel set $B \subset (0, +\infty)$; (c) $t \mapsto q_t, t \mapsto a_t, t \mapsto b_t, t \mapsto \int_0^{+\infty} \min\{x^2, 1\} \pi_t(dx)$ are in L^1_{loc} .

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)

 $\begin{array}{l} G: \mathbb{H}_r \times [0, +\infty) \to \mathbb{C} \text{ is a Herglotz vector field} \\ \text{whose REF } (\varphi_{s,t}) \subset \mathfrak{B} \\ \end{array} \begin{array}{l} \text{iff} \qquad G \text{ admits the representation} \end{array}$

$$G(\zeta,t) = q_t + a_t \zeta - b_t \zeta^2 + \int_0^{+\infty} \left(1 - e^{-x\zeta} - x\zeta \mathbf{1}_{(0,1)}(x)\right) \pi_t(dx)$$

for all $\zeta \in \mathbb{H}_r$ and a.e. $t \ge 0$, where $(q_t, a_t, b_t, \pi_t)_{t\ge 0}$ is a Lévy family.

CB-processes - 18.a -

Boundary f. pt. and Differentiability problem

■ a CB-process (Z_t) is *conservative*, i.e. $Z_t < +\infty$ a.s., iff

 $\zeta = 0$ is a boundary fixed point of $\varphi_{s,t}$'s, i.e. $\angle \lim_{\zeta \to 0} \varphi_{s,t}(\zeta) = 0$.

In the homogeneous case: conservative $\iff \int_0^1 \frac{dx}{G(x)} = \infty$.

Explanation: *G* is related to the *Koenings map* of (ϕ_t) ,

$$h: \mathbb{H}_{r} \xrightarrow{onto} \Omega \subset \mathbb{C} \text{ conformal}, \quad h \circ \phi_{t} \circ h^{-1} = \begin{cases} \mathsf{id}_{\Omega} + t, & \text{if } \tau \in \partial \mathbb{H}_{r}, \\ e^{\lambda t} \mathsf{id}_{\Omega}, & \text{if } \tau \in \mathbb{H}_{r}, \end{cases}$$

where $\lambda := G'(\tau)$.

M.D. Contreras, S. Días-Madrigal, Ch. Pommerenke, 2004:

 σ is a boundary f. pt. $\iff \angle \lim_{\sigma} h = \infty$.

No characterization of boundary f. pt.'s in the inhomogeneous case!

CB-processes - 18.b.1 -

■ a CB-process (*Z_t*) is *conservative*, i.e. *Z_t* < +∞ a.s., iff $\zeta = 0$ is a boundary fixed point of $\varphi_{s,t}$'s, i.e. $\angle \lim_{\zeta \to 0} \varphi_{s,t}(\zeta) = 0$. ■ Expectation: $\mathbb{E}[Z_t | Z_s = x] = x \varphi'_{s,t}(0)$ [for the conservative case]

The angular derivative
$$\varphi'(\sigma) := \angle \lim_{\zeta \to \sigma} \frac{\varphi(\zeta) - \sigma}{\zeta - \sigma} = \liminf_{\zeta \to \sigma} \frac{\operatorname{Re} \varphi(\zeta)}{\operatorname{Re} \zeta}$$

A boundary fixed point σ is said to be *regular* if $\varphi'(\sigma) \neq \infty$.

M.D. Contreras, S. Días-Madrigal, Ch. Pommerenke, 2006:

 σ is a boundary regular f. pt. (BRFP) of $(\phi_t) \iff \lambda := \angle \lim_{\zeta \to \sigma} \frac{G(\zeta)}{\zeta - \sigma} \neq \infty$.

CB-processes - 18.b.2 -

■ a CB-process (*Z_t*) is *conservative*, i.e. *Z_t* < +∞ a.s., iff $\zeta = 0$ is a boundary fixed point of $\varphi_{s,t}$'s, i.e. $\angle \lim_{\zeta \to 0} \varphi_{s,t}(\zeta) = 0$. ■ Expectation: $\mathbb{E}[Z_t | Z_s = x] = x \varphi'_{s,t}(0)$ [for the conservative case]

The angular derivative
$$\varphi'(\sigma) := \angle \lim_{\zeta \to \sigma} \frac{\varphi(\zeta) - \sigma}{\zeta - \sigma} = \liminf_{\zeta \to \sigma} \frac{\operatorname{Re} \varphi(\zeta)}{\operatorname{Re} \zeta}$$

A boundary fixed point σ is said to be *regular* if $\varphi'(\sigma) \neq \infty$.

Theorem (F. Bracci, M.D. Contreras, S. Días-Madrigal, P. G., 2015) Let *G* be a H. v. f. and $(\varphi_{s,t})$ its (reverse) evolution family. Then: σ is a BRFP for all $\varphi_{s,t}$'s $\Leftrightarrow \lambda(t) := \angle \lim_{\zeta \to \sigma} \frac{G(\zeta, t)}{\zeta - \sigma}$ is $L^1_{loc}([0, +\infty))$. In this case, $\varphi'_{s,t}(\sigma) = \exp(\int_s^t \lambda(u) du)$. CB-processes - 18.c -

■ a CB-process (*Z_t*) is *conservative*, i.e. *Z_t* < +∞ a.s., iff $\zeta = 0$ is a boundary fixed point of $\varphi_{s,t}$'s, i.e. $\angle \lim_{\zeta \to 0} \varphi_{s,t}(\zeta) = 0$. ■ Expectation: $\mathbb{E}[Z_t | Z_s = x] = x \varphi'_{s,t}(0)$ [for the conservative case]

The angular derivative $\varphi'(\sigma) := \angle \lim_{\zeta \to \sigma} \frac{\varphi(\zeta) - \sigma}{\zeta - \sigma} = \liminf_{\zeta \to \sigma} \frac{\operatorname{Re} \varphi(\zeta)}{\operatorname{Re} \zeta}$

■ The second moment: $\mathbb{E}\left[Z_t^2 \mid Z_s = x\right] =$ = $\begin{cases} +\infty, & \text{if } \varphi_{s,t}''(0) = -\infty, \\ (x \varphi_{s,t}'(0))^2 - x \varphi_{s,t}''(0), & \text{otherwise.} \end{cases}$

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022) If $t \mapsto \mathbb{E}\left[Z_t^k \mid Z_0 = 1\right]$, k = 1, 2, are AC_{loc}, then $(\varphi_{s,t})$ is AC. CB-processes - 19 -

Differentiability problem 1-to-1 correspondence

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)

There is a one-to-one correspondence among:

- families (k_{s,t}) of transition kernels of CB-processes with t → E [Z_t^k | Z₀ = 1], k = 1, 2, in AC_{loc}([0, +∞));
- AC reverse evolution families $(\varphi_{s,t}) \subset \{\varphi \in \mathfrak{B}\mathfrak{F} : \varphi''(0) \neq -\infty\};$
- the class of Herglotz vector fields given by Silverstein-type representation

$$G(\zeta,t) = a_t \zeta - b_t \zeta^2 + \int_0^{+\infty} \left(1 - e^{-x\zeta} - x\zeta \mathbf{1}_{(0,1)}(x)\right) \pi_t(dx),$$

where

(a) $a_t \in \mathbb{R}, b_t \ge 0, (q_t \equiv 0),$

and π_t are a non-negative Borel measures on $(0, +\infty)$; (b) $t \mapsto \pi_t(B)$ is measurable for any Borel set $B \subset (0, +\infty)$; (c) $t \mapsto a_t, t \mapsto b_t, t \mapsto \int_0^{+\infty} x^2 \pi_t(dx)$ are in L^1_{loc} .

CB-processes - 20 - DW-point at $\tau = 0$

Probabilistic interpretation of $\tau = 0$ **Remark:** $\tau = 0$ is the DW-point of $\varphi : \mathbb{H}_r \to \mathbb{H}_r$ iff $\varphi(0) = 0$ and $\varphi'(0) \leq 1$. **Recall:** $\mathbb{E} \left| Z_t \right| Z_s = x \right| = x \varphi'_{s,t}(0).$ **Conclusion:** $\varphi_{s,t}$'s DW-point is at $\tau = 0$ iff $t \mapsto \mathbb{E}\left[Z_t \mid Z_0 = 1\right]$ is non-increasing. Extinction time: $T_0^s := \inf \{t \ge s : Z_t = 0\}.$ Theorem (T. Hasebe, J.L. Pérez, P.G., 2022) $[T_0^s < +\infty]$ Suppose the Laplace exponents form an AC reverse EF ($\varphi_{s,t}$) with the DW-point $\tau = 0$ and with the H.v.f. G. If $\int_0^{+\infty} G''(\infty, t) dt = -\infty$, then $q_{\infty}(s) := \lim_{t \to +\infty} \varphi_{s,t}(\infty) = 0$ and hence $\mathbb{P}\left[T_0^s < +\infty \mid Z_s = x\right] = e^{-q_\infty(s)} = 1 \quad \forall x \in (0, +\infty), s \ge 0.$

CB-processes - 21 - DW-point at $\tau = \infty$

Theorem [monotonicity] (T. Hasebe, J.L. Pérez, P.G., 2022)

Let (Z_t) be a CB-process with associated topological REF $(\varphi_{s,t})$. TFAE: (i) the DW-point of all $\varphi_{s,t}$'s is at ∞ ;

(ii) $\mathbb{P}\left[Z_u \leq Z_t \mid Z_s = x\right] = 1$ whenever $0 \leq s \leq u \leq t$ and x > 0;

(iii) for any $(s, t) \in \Delta$ and for some (and hence all) x > 0,

we have $\mathbb{P}\left[Z_t \ge x \mid Z_s = x\right] = 1$.

Explosion time: $T^s_{\infty} := \inf \{t \ge s : Z_t = +\infty\}.$

 $a \pm m$

lf

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022) $[T_{\infty}^{s} < +\infty]$

Suppose the Laplace exponents form an AC reverse EF ($\varphi_{s,t}$)

with the DW-point $\tau = \infty$ and with the H.v.f. G.

$$\int_{0}^{t} G(0,t) \exp\left(\int_{0}^{t} G'(\infty,s) ds\right) dt = +\infty, \qquad (*)$$

then $q_0(s) := \lim_{t \to +\infty} \varphi_{s,t}(0) = +\infty$, and hence

 $\mathbb{P}\left[T_{\infty}^{s} < +\infty \mid Z_{s} = x\right] = 1 - e^{-q_{0}(s)} = 1 \text{ for any } s \ge 0 \text{ and } x \in (0, +\infty).$

Spatial embedding - 22 -

Consider again a branching process (X_t) on the **discrete state** space $\mathbb{N}_0^* = \{0, 1, 2, ...\} \cup \{+\infty\}$, with the transition probabilities $p_{s,t}(k) := \mathbb{P}[X_t = k \mid X_s = 1]$.

Definition (spatial embedding) M. Jiřina, 1958 We say that (X_t) embeds in (or extends to) a CB-process (Z_t) on $[0, +\infty]$ with the transition kernels ($k_{s,t}$)

if $k_{s,t}(1; \{k\}) = p_{s,t}(k)$ for any $k \in \mathbb{N}_0^*$ and all $(s, t) \in \Delta$.

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)

(*X_t*) embeds into some CB-process (*Z_t*) iff the probability generating functions (*F_{s,t}*) of (*X_t*) have common DW-point at $\tau = 0$.

The Laplace exponents of (Z_t) are given by $\exp(-\varphi_{s,t}(\zeta)) = F_{s,t}(e^{-\zeta})$.