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Simplest example

Introduction -1 - Galton—Watson process

Galton—Watson process

is @ Markov chain (X,), where X, is the number of identical “particles”
in the n-th generation, Xo = 1.

Each particle splits giving rise to k € IN offsprings
with probability p(k) independently from others (and prehistory).

Probability generating function F(z) Z p(k

is a holomorphic self-map of ID := {z : |z| < 1} W|th a boundary fixed
point at 1 (except for the degenerate case p(0) = 1, p(k) =0, k € IN).

Relation to Dynamics:

If p(k)’s do not change in time, then the probability distribution of X,
is given by the Taylor coefficients of the n-th iterate of the function F,

F°":= Fo...oF: D— D.
———

n times




Galton—Watson process

Introduction -2- contin’s-time, inhomogen’s

To a Galton—Watson process with continuous time one associates the family
(Ft)ter,, € Hol(ID, D), F(z) := E[zX]
(i) Fo=idp;
(i) FtoFs= Fiysforanyt,s e Ryp;
Under a mild continuity assumption on the transition probabilities ps :(k):
(i) ast— 0", F; —» idp pointwise and hence locally uniformly in ]D.)

A family (Ft)ter., € Hol(ID, ID) satisfying (i) — (iii)
is usually called a one-parameter semigroup in D.
Time-inhomogeneous case
Prob’ty generating f'ns: (Fs)iss0 € Hol(ID, D), Fs+(z) := E [zXf | Xs = 1],
(i) Fss=idp forany s> 0;
(i) FsuoFyt=Fst whenever 0 < <t
Again, under a mild continuity assumptlon on psi(k)’s:
(ii){(s,t) e Ryp: s <t} =:A>(s,t) = Fs; € Hol(ID,D) is continuous.J




. One-parameter semigroups,
Introduction -3- (reverse) evolution families

A family (Fs t)s,nea € Hol(ID, D) is said to be

a topological reverse evolution family if the above 3 conditions hold:
(i) Fss=idp; (i) FsyoFut=Fst whenever 0 <s<u<t;
(iii) (s,t) = Fs; is continuous.

Special feature of the homogeneous case (E. Berkson, H. Porta, 1978)
If (Ft) is a one-parameter semigroup, then

dFi(z)/dt = G(Fi(2)), t >0, Fo(z) =2z, (*)
for a suitable G € Hol(ID, C) called the infinitesimal generator of (F;). )

The infinitesimal generators form a convex cone Gen(ID) c Hol(ID, C).
Inhomogeneous extension of () [from the Dynamics viewpoint]

dFst(2)/dt = G(Fst(2),t), t>s>0, Fss(2) =2z
G(-, t) € Gen(ID) for a.e.t > 0. [ (Generalized) Loewner—Kufarev ODE]




’ One-parameter semigroups,
Introduction -4- (reverse) evolution families — bis

The Loewner—Kufarev ODE generates
absolutely continuous evolution families:
(Fs,t) € Hol(ID, D)
(i) Fss=idp; (i) FutoFsu=Fst whenever 0 <s<u<t;
(iii) stronger than continuity of (s, t) = Fs.

" One-parameter semigroups: E. Schréder, 1871; G. Koenigs, 1884;
E. Berkson, H. Porta, 1978:

GeGen(D) < G(z)=(t-2)(1-72)p(z),7€D, Rep>0.

= Evolution families: Ch. Loewner, Math. Ann. (1923)

S = {f - ID — C injective holomorphic with f(z) = z + a2 + .. }

A dense subclass Sg; is formed by slit mappings, i.e. by those f € S
for which I := C\ f(ID) is a Jordan arc with one end-point at co.



Introduction -5- Loewner’s Construction

Consider a slit mapping f € Sq1, I := C\ f(D).

1" Choose a parametrization y : [0, +-00] — T, y(+00) = co.
15 Consider the domains Q; := C \ y([t, +0]), t > 0.
15" By Riem.s Mapping Th’'m Vt > 0 1! conformal mapping

f: D% Q,  £(0)=0, f(0) > 0.

v’ Note that

v and that Qs = f5(ID) c f;(ID) = Q; whenever 0 < s < t.
5 Reparameterizing I~ V't >0 |f/(0) = e'|.

THEN:  ¢sr:=f1ofs € Hol(D,ID), 0<s<t,
are C'in (s, 1) and form an evolution family (¢s ().

Figure 1




Introduction -6- Classical Loewner Theory

Theorem (Ch. Loewner, 1923) f, (f;), (¢s,:) as above

3! continuous function & : [0, +o0) — JD s.t. forany ze D and s > 0,
W = W; (1) := @s,:(2) solves the IVP for the Loewner ODE

dw _W1 + &(Hw

= 1 _%W, w(s) = z.

Moreover, fo = limi— o €lps| forany s > 0. NB:|f=f,

v

NB: a sort of converse is also true 5 parametric representation
of &, S8 cS.
Extension to the whole class S: the classical Loewner—Kufarev ODE
P. P. Kufarev, 1943; Ch. Pommerenke, 1965; V. Ja. Gutljanskii, 1970:
dw
dt
Rep >0, p(0,t) = 1, measurable in t, not C' — Carathéodory’s ODE!

= —w(t)p(w(t), 1), t>s; w(s) = z;




Introduction -7- Chordal Loewner ODE

- 7(0) Hydrodynamic normalization:

yt) ..o
F(C) = C - ? + 0(1/C) (HD)

r asH>(— o, c(t) >0;

The evolution family

Pst = H 1o (ft_1 ofs)oH,
D>z = H(z) =it
satisfies the chordal L.— K. ODE

H 2
dw/dt = (1 —w)“p(w, t).

/
Berkson—Porta:  G(z) = (1 —2)(1-72)p(z), Rep>0, TeD.
Ther.h.s!s Gaa(w,t) = —wp(w,t) and Geo = (1 - w)?p(w, 1)
are t-dependent infinitesimal generators, with t := 0 and 7 := 1.



Denjoy — Wolff
Modern Loewner Theory -8- e”ﬁﬁim °

What is the meaning of 7 inB.—P’'s G(z) = (1 - 2)(1 —72) p(2)?

Theorem (Denjoy and Wolff)
¥V ¢ € Hol(ID, D) \ {idp}, 3!t € D, called the Denjoy — Wolff point of @, s.t.:

eif T €D, then ¢(7) =1, and ¢°" D2 7 L. inD if ¢ ¢ Aut(DD);
e if T € JD, then £ lim ¢p(z) =7 and ¢°" 228% 7 L. in D.

ZoT

Convention: for ¢ = idp, every 7 € D isits DW-point.

¥ The point 7 in B.—P’s formula is the DW-point of all ¢+’s
in the one-parameter semigroup (¢;) ~ G.

1 7 =0 is the DW-point of evolution families (¢s )
in Loewner’s classical construction.

i 7 =1 is the DW-point in the chordal version of Loewner’s const’n.



Modern Loewner Theory -9-

Herglotz vector fields

In 2012, F. Bracci, M.D. Contreras, and S. Diaz-Madrigal proposed

generalized L.—K. ODE:

dw
E_G

(w(t),t), t>s;

w(s) =zeD,

with G(z,t) := (T(t) - z)(1 —ﬁz) p(z,t), Rep >0, 7:[0,+c0) = D.

More precisely, they assumed that G is a Herglotz vector field:

afunction G : D x [0, +0) — C is called a Herglotz vector field, if:
HVF1: fora.e. t > 0, G(-, t) € Gen(ID);
HVF2: for each z € D, G(z, ) is measurable on [0, +c0);

HVF3: for each compact K c D,
Jaloc.integrable M : [0, +00) — [0, +c0) s.t.

m’?x|G(-,t)| < M(t) forae.t>0.




Herglotz vector fields

Modern Loewner Theory -10- e o Ser el

F. Bracci, M.D. Contreras, and S. Diaz-Madrigal proved that
the generalized Loewner—Kufarev ODE establishes a
one-to-one correspondence
between Herglotz vector fields and abs. continuous evolution families :

(ps,t)t=s>0 € Hol(ID, D) is an absolutely continuous evolution family if:

EF3: for every z € ID, alocally integrable k; : [0, +c0) — [0, +0) s.t.

t
|<ps,t(z) - @S,u(z)| < f kz(v)dv whenever0<s<uc<t.
u

» If EF2 isreplaced by ¢s: = ¢suo @y, then we get the
definition of an (absolutely continuous) reverse evolution family.

» If EF3 is replaced by (joint) continuity in (s, t),
then we talk about topological (reverse) evolution families.




Herglotz vector fields

Modern Loewner Theory -11- VS evolution families — bis

EFs «— reverse EFs
(ps,t) is an (AC or topological) reverse evolution family  iff

VT>0, (@I): ¢, =@utur(s) Where ur(t):=max {T-t, 0},
is a evolution family (AC or topological, resp.)

Theorem (Bracci, Contreras, Diaz-Madrigal)
e Let G be a Herglotz vector field. ThenVz <D Vt >0, the IVP

dw/ds = - G(W(s), s) a.e. se|0,t; W|S:t =2z (*)
has a unique solution w = w;; : [0,t] — DD,

and (@st), ‘Qos,t(z) = Wzt(S), |1

e Conversely, any AC reverse evolution family (¢s ) is generated in
the above sense by a corresponding Herglotz vector field G
[unique up to a null-set on the t-axis].)




e on parabolic
A remark -12 evolution families

A self-map ¢ € Hol(ID, D) is called parabolic if its DW-point = € JID

’ L . @(Z)_T -
and (p(r)._zzlm—z_T = 1.

For a self-map ¢ € Hol(IH, H), H := {C : ImC > 0}, this translates to
_ 1 k(x;dy)
Zlim o))/ =1 — —:f , XER, (*
{—c0 ()/ o(C) —x R C—Y (+)
for some (uniquely determined) Borel probability measures k(x;-) on IR.

R.O. Bauer, 2004:

Every reverse EF of parabolic self-maps of ¢5; : H - H
— afamily (ks ) of transition kernels of a Markov process.

Relation ®5,0®,; = ®ds; is < to Chapman—Kolmogorov.

U. Franz, T. Hasebe, S. SchleiBinger, 2020 [100+ page paper]:
a complete characterization and a 1-to-1 correspondence with SAIPs.



Continuous-state branching processes - 13-

Continuous-state branching processes (CB-processes for short)

are Markov stochastic processes analogous to Galton—Watson processes
but with the state space [0, +].  Their transition kernels

kst : [0,+00] X B([0, +c0]) — [0,1], 0<s<Ht, satisfy

the branching property: Kksi(X;-) *kst(y;-) = k(x+y;-), x,y=0.

Branching property ¢  the Laplace transform of ks :(x, - ) is of the form

Llks(x;)](A) == fo eoif‘fks,t(x;dg):exp(—q)s,tu)x), X, A € (0, +),

where ¢ 1, referred to as the Laplace exponent, is a Bernstein function,
i.e. non-negative C*-function in (0, 4-c0) with (-1 )”*1([)(5'}) >0,nelN.

5= Every Bernstein function # 0 is a restriction
of a holomorphic self-map ¢ : Hy — H, := {z € C: Rez > 0};

= B = {Bernstein functions ¢ # 0} is closed w.r.t. - o -
and also topologically closed in Hol(H;, H;).




time homogeneous

CB-pI‘OCGSSGS -14- and inhomogeneous

Time-homogeneous case: Kst = Ko t-s, Pst = $0,t-s
The Laplace exponents ¢; := @q+-s form a one-parameter semigroup in B7.
> M. Jifina, 1958 » M.L. Silverstein, 1968: Gen[B§]

+00 ,
G(C) = q+aC—bi? + f (1= 67 = xC10.)(x)) m(dx), C € H,
0
where a € R, g,b > 0 and  is a Borel non-negative measure on (0, 4+0)
—+o00
satisfying f min{x2, 1} (dx) < +oo (*)

0
The corresp’nce between ¢ € Gen[8¥] and quadruples (g, a, b, ) is 1-to-1.

v

Inhomogeneous case (“varying environments”)
» V.Bansaye, F. Simatos, 2015

» R.Fang, Z.Li, 2022: constructing CB-processes via an integral eq’n for
the Laplace exponents ¢s;. But no Complex Analysis so far!

v




inhomogeneous case;
CB-processes -15- complex-analytic tools

Joint results with Takahiro Hasebe (Hokkaido Univ., Japan) and
José Luis Pérez (CIMAT, México): arXiv:2206.04753, arXiv:2211.12442,

Llkst(x;)J(1) = exp (= @s(A) ), X, A € (0,+00). (*)
The Chapman—Kolmogorov equation:
ksi(X;:) = f ksu(X;dy) kut(y;-), 0<s<u<t,
[0,+00]
— the composition rule @s: = @su © @yt.

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)
The Laplace transform () establishes a 1-to-1 correspondence

between topological reverse EFs (¢s) € BE and
{s:0<s<t) families (ks ¢) of transition kernels of CB-processes with

AX[0,+0) 3 (s,1,X) > Kkst(X;-) € P(]0,+o0]) is weakly continuous.}



https://doi.org/10.48550/arXiv.2206.04753
https://doi.org/10.48550/arXiv.2211.12442

with absolutely

CB-pI’OCGSSGS -16- continuous REFs

¥ Homogeneous case: continuity =  differentiability in t.
1 Inhomogeneous case: “AC” is stronger than “topological”.

Assume that (¢ ) is an AC reverse evolution family in Hy.

Problem
Characterize Herglotz vector fields G : H;. x [0, +o0) — C

whose REFs (¢s ) € B§.

General Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)
Let S c Hol(D, D), D € {ID,H, H,}.

Denote by Gen|[S] the set of all inf. gen’tors G such that (q‘JtG) cS

Suppose: (i) & isclosedw.rt. - o - and idp € S;

(i) & is (topogically) closed in Hol(D, D).
Then: Gen[&] is closed cone in Hol(D,C). Moreover,

(pS)c e = G(-, t) € Gen[S] for a.e. t > 0.

v




characterization of

CB—processes -17- Herglotz vector fields

Recall Silverstein’s representation formula for G € Gen[B¥]:
G(C)=q+aC-bl* + f()+oo(1 — 67— xC1(g1)(x)) m(dx), C € Hy,

where a€ R, g,b >0, and fo min{x?, 1} 7(dx) < +oco.

T.Hasebe, J.L. Pérez, P.G.: (less technical) Complex-analytic proof.

A family (q:, at, by, )0 is said to be a Lévy family if:

(@) a:€eR, qi, bt >0, and 1i; are a non-negative Borel measures on (0, +0);
(b) t m;(B) is measurable for any Borel set B c (0, +0);

() t—>aqgnta,te byt f()+oomin{X2,1}nt(dX) arein L

loc*

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)

G : H; x [0, +00) — C is a Herglotz vector field
whose REF (¢st) € BF iff G admits the representation

—+00
G(Ct) = qi+ aC— bil® + j; (1 —e™ - XC'|(0,1)(X)) t(dx)

forall C € H, and a.e.t > 0, where (q;, a, by, 7tt) =0 is @ Lévy family.




Boundary f. pt. and

CB—processeS -18.a- Differentiability problem

15 a CB-process (Z;) is conservative, i.e. Z; < 4+ a.s., iff
C =0 is aboundary fixed point of ps+’s, i.e. Zlimz_ @st(C) = 0.

|
. dx
In the homogeneous case: conservative < G = o0
0

Explanation: G is related to the Koenings map of (¢y),

h:H, 2% Q c C conformal, ho¢ioh™ =

idg + t, if T€dH,,
eMidg, if T € Hy,

where A := G'(7).
M.D. Contreras, S. Dias-Madrigal, Ch. Pommerenke, 2004:
o isaboundary f.pt. & /limsh = oo.

No characterization of boundary f. pt.s in the inhomogeneous case!



Boundary f. pt. and

CB—processes -18.0.1 - Differentiability problem

15" a CB-process (Z;) is conservative, i.e. Z; < 4o a.s., iff
C =0 is a boundary fixed point of gs’s, i.e. Zlim¢_ ¢s,:(C) = 0.

i Expectation: E [Zt | Zs = X] = X(p;/t(O) [for the conservative case]
¢(C)—o

. .. Req(C)
Th lar derivati ’ = /1 =1 f
e angular derivative ¢’ (0) lim = im inf —2 C

A boundary fixed point ¢ is said to be regular if ¢’(c) # co. J

M.D. Contreras, S. Dias-Madrigal, Ch. Pommerenke, 2006:
G(0)

0 is a boundary regular f.pt. (BRFP) of (1) <= A := Aéim T—o # o0
-0 G —



Boundary f. pt. and

CB—processes -18.b.2 - Differentiability problem

15 a CB-process (Z;) is conservative, i.e. Z; < 4o a.s., iff
C =0 is a boundary fixed point of gs’s, i.e. Zlim¢_o ¢s,:(C) = 0.

1 Expectation: E [Zt | Zs = x] = x ¢ ,(0) [for the conservative case]

R ' . p(Q) -0 .. _Reg(C)
Th = £ lim = lim
e angular derivative  ¢’(0) L CI| ' o I|C |L1f Rel

A boundary fixed point ¢ is said to be regular if ¢’(c) # . J

Theorem (F. Bracci, M.D. Contreras, S. Dias-Madrigal, P. G., 2015)
Let G be aH.v.f. and (¢s,) its (reverse) evolution family. Then:

o isaBRFPforall pst's & A(t) :=Zlim GLt) is L' ([0, +0)).

(>0 -0 loc

In this case, @ 4(0) = exp(j:/\(u)du).




Boundary f. pt. and

CB-processes -18.c- Differentiability problem
15 a CB-process (Z;) is conservative, i.e. Z; < 4o a.s., iff

C =0 is aboundary fixed point of @s’s, i.e. Zlim¢o ¢s,:(C) = 0.

1 Expectation: E [Zt | Zs = x] = X @ (0) [for the conservative case]

- R
The angular derivative  ¢’(0) = zcli_rg% = Iircn_)i(?f ;(SE:C)

1=~ The second moment: E [Zt2 |Zs = x] —
+ 0o, if @y .(0) = —oo,

(x@, (0)) = xg7,(0), otherwise.

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)
If tE[Z)}|Z =1], k = 1,2, are AC1ec, then (ps,) is AC.




Differentiability problem
CB-pI’OCGSSGS -19- 1-to-1 correspondence

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)
There is a one-to-one correspondence among:
o families (ks) of transition kernels of CB-processes
with t - E[Z/|Zy = 1], k = 1,2, in AC10c([0, +0));
e AC reverse evolution families (¢s) C {go € BF : ¢”(0) # —oo};

e the class of Herglotz vector fields given by Silverstein-type
representation

—-+o00
G 1) = aill—b®+ f (1 - 67 = xC1(01y(x)) me(dx),
0
where
(@) ar € R, bt >0, (q: =0),
and 7; are a non-negative Borel measures on (0, +0);
(b) t — m(B) is measurable for any Borel set B c (0, +);

()t a,t— byt fOerx2 ny(dx) arein L

loc”




CB-processes -20- DW-pointatt =0

Probabilistic interpretation of T = 0
Remark: = 0 is the DW-point of ¢ : H, — H, iff

¢(0)=0and ¢’(0) < 1.
Recall: E[Z|Z = x| = x¢/,(0).

Conclusion: ¢g;'s DW-pointis at 7 = 0 iff
t— E [Zt|Zo = 1] is non-increasing.

4

Extinction time: Tg =inf{t>s: Z =0}.
Theorem (T. Hasebe, J.L. Pérez, P.G., 2022) [T§ < +o0]

Suppose the Laplace exponents form an AC reverse EF (¢st)
with the DW-point 7 = 0 and with the H. v.f. G.
It 7 G”(co,t)dt = — o, then Guo(S) := liM¢—s 0 Ps(c0) = O and
hence IP[Tg < 400|Zs = x] = e %) =1 Vxe(0,+x), s>0.

v,




CB-processes -21- DW-pointatt = oo

Theorem [monotonicity] (T.Hasebe, J.L. Pérez, P.G., 2022)
Let (Z;) be a CB-process with associated topological REF (¢s;). TFAE:
(i) the DW-point of all ps’s is at oo;
(i) P[Z,<2Z|Z=x|=1whenever0<s<u<tandx>0;
(iii) forany (s,t) € A and for some (and hence all) x > 0,
we have]P[Zt > x| Z :x] — ],
)

Explosiontime: TS :=inf{t>s: Z; = +oo}.
Theorem (T.Hasebe, J.L. Pérez, P.G., 2022) [TS < +o]

Suppose the Laplace exponents form an AC reverse EF (¢st)
with the DW-point 7 = co and with the H.v.f. G.

If f +MG(o,z‘) exp N G'(c0,s)ds)dt = + o, ()
0

then qo(s) := limi5 10 @s:(0) = 400, and hence
P[TS <+o0|Zs=x] = 1-e( = 1forany s >0and x € (0, +o0).

V.




. . of Galton—Watson processes
Spatial embedding - 22- in CB-processes

Consider again a branching process (X;)

on the discrete state space N; = {0,1,2,...} U {+oo},
with the transition probabilities ps (k) := P [X; = k | Xs = 1].
Definition (spatial embedding) M. Jifina, 1958

We say that (X;) embeds in (or extends to)
a CB-process (Z;) on [0, +co] with the transition kernels (ks )

if  Kst(1;{k}) = pst(k) forany k e Ny andall (s, t) € A.

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)

(Xi) embeds into some CB-process (Z;) iff
the probability generating functions (Fs ;) of (X;)
have common DW-point at 7 = 0.

The Laplace exponents of (Z;) are given by exp (—(pslt(C)) = Fs¢(e7).




