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Simplest example

Galton – Watson process

Galton – Watson process
is a Markov chain (Xn), where Xn is the number of identical “particles”

in the n-th generation, X0 = 1.
Each particle splits giving rise to k ∈N0 offsprings

with probability p(k ) independently from others (and prehistory).

F(z) := E
[
zX1
]
=

+∞∑
k=0

p(k )zkProbability generating function

is a holomorphic self-map of D := {z : |z| < 1} with a boundary fixed
point at 1 (except for the degenerate case p(0) = 1, p(k ) = 0, k ∈N).

Relation to Dynamics:

If p(k )’s do not change in time, then the probability distribution of Xn
is given by the Taylor coefficients of the n-th iterate of the function F ,

F◦n := F ◦ . . . ◦ F︸       ︷︷       ︸
n times

: D→ D.
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Galton – Watson process

contin’s-time, inhomogen’s

To a Galton – Watson process with continuous time one associates the family

(Ft)t∈R⩾0 ⊂ Hol(D,D), Ft(z) := E[zXt ]

(i) F0 = idD;
(ii) Ft ◦ Fs = Ft+s for any t , s ∈ R⩾0;
Under a mild continuity assumption on the transition probabilities ps,t(k ):

(iii) as t → 0+, Ft → idD pointwise and hence locally uniformly in D.

A family (Ft)t∈R⩾0 ⊂ Hol(D,D) satisfying (i) – (iii)
is usually called a one-parameter semigroup in D.

Time-inhomogeneous case

Prob’ty generating f’ns: (Fs,t)t⩾s⩾0 ⊂ Hol(D,D), Fs,t(z) := E
[
zXt
∣∣∣Xs = 1

]
,

(i) Fs,s = idD for any s ⩾ 0;
(ii) Fs,u ◦ Fu,t = Fs,t whenever 0 ⩽ s ⩽ u ⩽ t ;
Again, under a mild continuity assumption on ps,t(k )’s:

(iii) {(s, t) ∈ R⩾0 : s ⩽ t} =: ∆ ∋ (s, t) 7→ Fs,t ∈ Hol(D,D) is continuous.
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One-parameter semigroups,
(reverse) evolution families

A family (Fs,t)(s,t)∈∆ ⊂ Hol(D,D) is said to be
a topological reverse evolution family if the above 3 conditions hold:

(i) Fs,s = idD; (ii) Fs,u ◦ Fu,t = Fs,t whenever 0 ⩽ s ⩽ u ⩽ t ;
(iii) (s, t) 7→ Fs,t is continuous.

Special feature of the homogeneous case (E. Berkson, H. Porta, 1978)

If (Ft) is a one-parameter semigroup, then

dFt(z)/dt = G(Ft(z)), t ⩾ 0, F0(z) = z, (∗)

for a suitable G ∈ Hol(D,C) called the infinitesimal generator of (Ft).

The infinitesimal generators form a convex cone Gen(D) ⊂ Hol(D,C).

Inhomogeneous extension of (∗) [from the Dynamics viewpoint]

dFs,t(z)/dt = G
(
Fs,t(z), t

)
, t ⩾ s ⩾ 0, Fs,s(z) = z;

G(·, t) ∈ Gen(D) for a.e. t ⩾ 0. [ (Generalized) Loewner – Kufarev ODE ]
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One-parameter semigroups,

(reverse) evolution families – bis

The Loewner – Kufarev ODE generates
absolutely continuous evolution families:

(Fs,t) ⊂ Hol(D,D)

(i) Fs,s = idD; (ii) Fu,t ◦ Fs,u = Fs,t whenever 0 ⩽ s ⩽ u ⩽ t ;
(iii) stronger than continuity of (s, t) 7→ Fs,t .

ZOne-parameter semigroups: E. Schröder, 1871; G. Koenigs, 1884;
E. Berkson, H. Porta, 1978:

G ∈ Gen(D) ⇐⇒ G(z) = (τ − z)(1 − τz)p(z), τ ∈ D, Rep ⩾ 0.

ZEvolution families: Ch. Loewner, Math. Ann. (1923)

S :=
{
f : D→ C injective holomorphic with f(z) = z + a2z2 + . . .

}
A dense subclass Ssl is formed by slit mappings, i.e. by those f ∈ S

for which Γ := C \ f(D) is a Jordan arc with one end-point at ∞.
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Consider a slit mapping f ∈ Ssl, Γ := C \ f(D).

ZChoose a parametrization γ : [0,+∞]→ Γ, γ(+∞) = ∞.

ZConsider the domains Ωt := C \ γ([t ,+∞]), t ⩾ 0.

ZBy Riem.’s Mapping Th’m ∀t ⩾ 0 ∃! conformal mapping

ft : D
onto
−−−→ Ωt , ft(0) = 0, f ′t (0) > 0.

✔ Note that f0 = f

✔ and that Ωs = fs(D) ⊂ ft(D) = Ωt whenever 0 ⩽ s ⩽ t .

ZReparameterizing Γ: ∀ t ⩾ 0 f ′t (0) = et .

φs,t := f−1
t ◦ fs ∈ Hol(D,D), 0 ⩽ s ⩽ t ,THEN:

Figure 1

are C1 in (s, t) and form an evolution family (φs,t).
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Theorem (Ch. Loewner, 1923) f , (ft), (φs,t) as above

∃! continuous function ξ : [0,+∞)→ ∂D s.t. for any z ∈ D and s ⩾ 0,
w = wz,s(t) := φs,t(z) solves the IVP for the Loewner ODE

dw
dt

= −w
1 + ξ(t)w

1 − ξ(t)w
, t ⩾ s; w(s) = z.

fs = limt→+∞ etφs,t for any s ⩾ 0.Moreover, NB: f = f0

NB: a sort of converse is also true Z parametric representation
of S′, Ssl ⊂ S′ ⊂ S.

Extension to the whole class S: the classical Loewner – Kufarev ODE
P. P. Kufarev, 1943; Ch. Pommerenke, 1965; V. Ja. Gutljanskii, 1970:

dw
dt

= −w(t)p(w(t), t), t ⩾ s; w(s) = z;

Re p ⩾ 0, p(0, t) = 1, measurable in t , not C1 — Carathéodory’s ODE!
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Hydrodynamic normalization:

ft(ζ) = ζ −
c(t)
ζ

+ o(1/ζ) (HD)

asH ∋ ζ→∞, c(t) ⩾ 0;

The evolution family

φs,t := H−1
◦ (f−1

t ◦ fs) ◦ H,

D ∋ z 7→ ζ = H(z) := i 1+z
1−z ,

satisfies the chordal L. – K. ODE

dw/dt = (1 − w)2p(w, t).

G(z) = (τ − z)(1 − τz)p(z), Rep ⩾ 0, τ ∈ D.Berkson – Porta:

The r. h. s.’ s Gcla(w, t) = −w p(w, t) and Gcho = (1 − w)2p(w, t)

are t-dependent infinitesimal generators, with τ := 0 and τ := 1.
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Denjoy – Wolff

point

What is the meaning of τ in B.– P.’ s G(z) = (τ − z)(1 − τz)p(z)?

Theorem (Denjoy and Wolff)

∀φ ∈ Hol(D,D) \ {idD}, ∃! τ ∈ D, called the Denjoy – Wolff point of φ, s.t.:

• if τ ∈ D, then φ(τ) = τ, and φ◦n
n→+∞
−−−−−→ τ l.u. inD if φ < Aut(D);

• if τ ∈ ∂D, then ∠ lim
z→τ

φ(z) = τ and φ◦n
n→+∞
−−−−−→ τ l.u. in D.

Convention: for φ = idD, every τ ∈ D is its DW-point.

Z The point τ in B.– P.’ s formula is the DW-point of all ϕt ’s
in the one-parameter semigroup (ϕt) ∼ G.

Z τ = 0 is the DW-point of evolution families (φs,t)
in Loewner’s classical construction.

Z τ = 1 is the DW-point in the chordal version of Loewner’s const’n.
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In 2012, F. Bracci, M.D. Contreras, and S. Díaz-Madrigal proposed

dw
dt

= G
(
w(t), t

)
, t ⩾ s; w(s) = z ∈ D,generalized L.– K. ODE:

with G(z, t) :=
(
τ(t)− z

)(
1− τ(t)z

)
p(z, t), Re p ⩾ 0, τ : [0,+∞)→ D.

More precisely, they assumed that G is a Herglotz vector field:

a function G : D × [0,+∞)→ C is called a Herglotz vector field, if:

HVF1: for a.e. t ⩾ 0, G(·, t) ∈ Gen(D);

HVF2: for each z ∈ D, G(z, ·) is measurable on [0,+∞);

HVF3: for each compact K ⊂ D,
∃ a loc. integrable M : [0,+∞)→ [0,+∞) s.t.

max
K

∣∣∣G(·, t)
∣∣∣ ⩽ M(t) for a.e. t ⩾ 0.
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VS evolution families

F. Bracci, M.D. Contreras, and S. Díaz-Madrigal proved that
the generalized Loewner – Kufarev ODE establishes a

one-to-one correspondence
between Herglotz vector fields and abs. continuous evolution families :

(φs,t)t⩾s⩾0 ⊂ Hol(D,D) is an absolutely continuous evolution family if:

EF1: φs,s = idD for all s ⩾ 0; EF2: φs,t = φu,t ◦ φs,u, 0 ⩽ s ⩽ u ⩽ t ;

EF3: for every z ∈ D, ∃ a locally integrable kz : [0,+∞)→ [0,+∞) s.t.∣∣∣φs,t(z) − φs,u(z)
∣∣∣ ⩽ ∫ t

u
kz(v)dv whenever 0 ⩽ s ⩽ u ⩽ t .

▶ If EF2 is replaced by φs,t = φs,u ◦ φu,t , then we get the
definition of an (absolutely continuous) reverse evolution family.

▶ If EF3 is replaced by (joint) continuity in (s, t),
then we talk about topological (reverse) evolution families.
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VS evolution families – bis

EFs ←→ reverse EFs
(φs,t) is an (AC or topological) reverse evolution family iff

∀ T > 0, (ψT
s,t) : ψT

s,t = φuT (t),uT (s), where uT (t) := max
{
T − t , 0

}
,

is a evolution family (AC or topological, resp.)

Theorem (Bracci, Contreras, Díaz-Madrigal)
• Let G be a Herglotz vector field. Then ∀ z ∈ D ∀ t > 0, the IVP

dw/ds = − G
(
w(s), s

)
a.e. s ∈ [0, t ]; w

∣∣∣
s=t = z. (∗)

has a unique solution w = wz,t : [0, t ]→ D,

and (φs,t), φs,t(z) := wz,t(s), is an AC reverse evolution family.

• Conversely, any AC reverse evolution family (φs,t) is generated in
the above sense by a corresponding Herglotz vector field G

[unique up to a null-set on the t-axis].
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evolution families

A self-map φ ∈ Hol(D,D) is called parabolic if its DW-point τ ∈ ∂D

φ′(τ) := ∠ lim
z→τ

φ(z) − τ
z − τ

= 1.and

For a self-map Φ ∈ Hol(H,H),H := {ζ : Im ζ > 0}, this translates to

∠ lim
ζ→∞

Φ(ζ)
/
ζ = 1 ⇐⇒

1
Φ(ζ) − x

1
Φ(ζ) − x

=

∫
R

k (x;dy)
ζ − y

, x ∈ R, (∗)

for some (uniquely determined) Borel probability measures k (x; ·) on R.

R.O. Bauer, 2004:
Every reverse EF of parabolic self-maps of Φs,t :H→H

−→ a family (ks,t) of transition kernels of a Markov process.

Relation Φs,u ◦ Φu,t = Φs,t is ⇐⇒ to Chapman – Kolmogorov.

U. Franz, T. Hasebe, S. Schleißinger, 2020 [100+ page paper]:
a complete characterization and a 1-to-1 correspondence with SAIPs.
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Continuous-state branching processes (CB-processes for short)
are Markov stochastic processes analogous to Galton – Watson processes
but with the state space [0,+∞]. Their transition kernels

ks,t : [0,+∞] × B([0,+∞]) → [0,1], 0 ⩽ s ⩽ t , satisfy

the branching property: ks,t(x; · ) ∗ ks,t(y; · ) = k (x + y; · ), x , y ⩾ 0.

Branching property ⇔ the Laplace transform of ks,t(x , · ) is of the form

L[ks,t(x; · )](λ) :=
∫ +∞

0
e−λξks,t(x;dξ) = exp

(
− φs,t(λ) x

)
, x , λ ∈ (0,+∞),

where φs,t , referred to as the Laplace exponent, is a Bernstein function,
i.e. non-negative C∞-function in (0,+∞) with (−1)n−1φ(n)

s,t ⩾ 0, n ∈N.

Z Every Bernstein function . 0 is a restriction
of a holomorphic self-map φ :Hr →Hr := {z ∈ C : Re z > 0};

Z BF :=
{
Bernstein functions φ . 0

}
is closed w.r.t. · ◦ ·

and also topologically closed in Hol(Hr,Hr).
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time homogeneous

and inhomogeneous

Time-homogeneous case: ks,t = k0,t−s , φs,t = φ0,t−s

The Laplace exponents ϕt := φ0,t−s form a one-parameter semigroup in BF.

▶ M. Jiřina, 1958 ▶ M.L. Silverstein, 1968: Gen[BF]

G(ζ) = q + aζ − bζ2 +

∫ +∞

0

(
1 − e−xζ

− xζ1(0,1)(x)
)
π(dx), ζ ∈Hr,

where a ∈ R, q,b ⩾ 0 and π is a Borel non-negative measure on (0,+∞)
+∞∫
0

min{x2,1}π(dx) < +∞satisfying (∗)

The corresp’nce between ϕ ∈ Gen[BF] and quadruples (q,a,b , π) is 1-to-1.

Inhomogeneous case (“varying environments”)
▶ V. Bansaye, F. Simatos, 2015
▶ R. Fang, Z. Li, 2022: constructing CB-processes via an integral eq’n for

the Laplace exponents φs,t . But no Complex Analysis so far!
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inhomogeneous case;
complex-analytic tools

Joint results with Takahiro Hasebe (Hokkaido Univ., Japan) and
José Luis Pérez (CIMAT, México): arXiv:2206.04753, arXiv:2211.12442.

L[ks,t(x; · )](λ) = exp
(
− φs,t(λ) x

)
, x , λ ∈ (0,+∞). (∗)

The Chapman – Kolmogorov equation:

ks,t(x; ·) =

∫
[0,+∞]

ks,u(x;dy) ku,t(y; ·), 0 ⩽ s ⩽ u ⩽ t ,

⇐⇒ the composition rule φs,t = φs,u ◦ φu,t .

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)
The Laplace transform (∗) establishes a 1-to-1 correspondence

between topological reverse EFs (φs,t)⊂ BF and{
(s, t) : 0 ⩽ s ⩽ t

}
︸                     ︷︷                     ︸ families (ks,t) of transition kernels of CB-processes with

∆ × [0,+∞) ∋ (s, t , x) 7→ ks,t(x; ·) ∈ P([0,+∞]) is weakly continuous.

https://doi.org/10.48550/arXiv.2206.04753
https://doi.org/10.48550/arXiv.2211.12442
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continuous REFs

Z Homogeneous case: continuity ⇒ differentiability in t .
Z Inhomogeneous case: “AC” is stronger than “topological”.

Assume that (φs,t) is an AC reverse evolution family inHr.

Problem
Characterize Herglotz vector fields G :Hr × [0,+∞)→ C

whose REFs (φs,t)⊂ BF.

General Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)

Let S ⊂ Hol(D,D), D ∈ {D,H,Hr}.
Denote by Gen[S] the set of all inf. gen’tors G such that (ϕG

t ) ⊂ S.
Suppose: (i) S is closed w.r.t. · ◦ · and idD ∈ S;

(ii) S is (topogically) closed in Hol(D,D).

Then: Gen[S] is closed cone in Hol(D,C). Moreover,
(φG

s,t) ⊂ S ⇐⇒ G(·, t) ∈ Gen[S] for a.e. t ⩾ 0.
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characterization of

Herglotz vector fields

Recall Silverstein’s representation formula for G ∈ Gen[BF]:

G(ζ) = q + aζ − bζ2 +
∫ +∞

0

(
1 − e−xζ

− xζ1(0,1)(x)
)
π(dx), ζ ∈Hr,

where a ∈ R, q,b ⩾ 0, and
∫ +∞

0 min{x2,1}π(dx) < +∞.

T. Hasebe, J.L. Pérez, P.G.: (less technical) Complex-analytic proof.

A family (qt ,at ,bt , πt)t⩾0 is said to be a Lévy family if:
(a) at ∈ R, qt , bt ⩾ 0, and πt are a non-negative Borel measures on (0,+∞);
(b) t 7→ πt(B) is measurable for any Borel set B ⊂ (0,+∞);

(c) t 7→ qt , t 7→ at , t 7→ bt , t 7→
∫ +∞

0 min{x2,1}πt(dx) are in L1
loc.

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)

G :Hr × [0,+∞)→ C is a Herglotz vector field
whose REF (φs,t)⊂ BF iff G admits the representation

G(ζ, t) = qt + atζ − btζ
2 +

∫ +∞

0

(
1 − e−xζ

− xζ1(0,1)(x)
)
πt(dx)

for all ζ ∈Hr and a.e. t ⩾ 0, where (qt ,at ,bt , πt)t⩾0 is a Lévy family.
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Boundary f. pt. and

Differentiability problem

Za CB-process (Zt) is conservative, i.e. Zt < +∞ a.s., iff

ζ = 0 is a boundary fixed point of φs,t ’s, i.e. ∠ limζ→0 φs,t(ζ) = 0.

In the homogeneous case: conservative ⇐⇒

∫ 1

0

dx
G(x)

= ∞.

Explanation: G is related to the Koenings map of (ϕt),

h :Hr
onto
−−−→ Ω ⊂ C conformal, h ◦ϕt ◦h−1 =

 idΩ + t , if τ ∈ ∂Hr,

eλt idΩ, if τ ∈Hr,

where λ := G′(τ).

M.D. Contreras, S. Días-Madrigal, Ch. Pommerenke, 2004:
σ is a boundary f. pt. ⇐⇒ ∠ limσ h = ∞.

No characterization of boundary f. pt.’s in the inhomogeneous case!
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Boundary f. pt. and

Differentiability problem

Za CB-process (Zt) is conservative, i.e. Zt < +∞ a.s., iff

ζ = 0 is a boundary fixed point of φs,t ’s, i.e. ∠ limζ→0 φs,t(ζ) = 0.

ZExpectation: E
[
Zt
∣∣∣Zs = x

]
= x φ′s,t(0) [for the conservative case]

φ′(σ) := ∠ lim
ζ→σ

φ(ζ) − σ

ζ − σ
= lim inf

ζ→σ

Reφ(ζ)

Re ζ
The angular derivative

A boundary fixed point σ is said to be regular if φ′(σ) , ∞.

M.D. Contreras, S. Días-Madrigal, Ch. Pommerenke, 2006:

σ is a boundary regular f. pt. (BRFP) of (ϕt) ⇐⇒ λ := ∠ lim
ζ→σ

G(ζ)

ζ − σ
, ∞.
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Boundary f. pt. and

Differentiability problem

Za CB-process (Zt) is conservative, i.e. Zt < +∞ a.s., iff

ζ = 0 is a boundary fixed point of φs,t ’s, i.e. ∠ limζ→0 φs,t(ζ) = 0.

ZExpectation: E
[
Zt
∣∣∣Zs = x

]
= x φ′s,t(0) [for the conservative case]

φ′(σ) := ∠ lim
ζ→σ

φ(ζ) − σ

ζ − σ
= lim inf

ζ→σ

Reφ(ζ)

Re ζ
The angular derivative

A boundary fixed point σ is said to be regular if φ′(σ) , ∞.

Theorem (F. Bracci, M.D. Contreras, S. Días-Madrigal, P. G., 2015)

Let G be a H. v. f. and (φs,t) its (reverse) evolution family. Then:

σ is a BRFP for all φs,t ’s ⇔ λ(t) := ∠ lim
ζ→σ

G(ζ, t)
ζ − σ

is L1
loc([0,+∞)).

φ′s,t(σ) = exp
( ∫ t

s λ(u)du
)
.In this case,
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Boundary f. pt. and

Differentiability problem

Za CB-process (Zt) is conservative, i.e. Zt < +∞ a.s., iff

ζ = 0 is a boundary fixed point of φs,t ’s, i.e. ∠ limζ→0 φs,t(ζ) = 0.

ZExpectation: E
[
Zt
∣∣∣Zs = x

]
= x φ′s,t(0) [for the conservative case]

φ′(σ) := ∠ lim
ζ→σ

φ(ζ) − σ

ζ − σ
= lim inf

ζ→σ

Reφ(ζ)

Re ζ
The angular derivative

ZThe second moment: E
[
Z 2

t

∣∣∣Zs = x
]
=

=

 +∞, if φ′′s,t(0) = −∞,(
x φ′s,t(0))

2
− x φ′′s,t(0), otherwise.

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)

If t 7→ E
[
Z k

t

∣∣∣Z0 = 1
]
, k = 1,2, are ACloc, then (φs,t) is AC.
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Differentiability problem
1-to-1 correspondence

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)
There is a one-to-one correspondence among:
• families (ks,t) of transition kernels of CB-processes

with t 7→ E
[
Z k

t

∣∣∣Z0 = 1
]
, k = 1,2, in ACloc([0,+∞));

• AC reverse evolution families (φs,t) ⊂
{
φ ∈ BF : φ′′(0) , −∞

}
;

• the class of Herglotz vector fields given by Silverstein-type
representation

G(ζ, t) = atζ − btζ
2 +

∫ +∞

0

(
1 − e−xζ

− xζ1(0,1)(x)
)
πt(dx),

where
(a) at ∈ R, bt ⩾ 0, (qt ≡ 0),

and πt are a non-negative Borel measures on (0,+∞);
(b) t 7→ πt(B) is measurable for any Borel set B ⊂ (0,+∞);

(c) t 7→ at , t 7→ bt , t 7→
∫ +∞

0 x2 πt(dx) are in L1
loc.
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Probabilistic interpretation of τ = 0
Remark: τ = 0 is the DW-point of φ :Hr →Hr iff

φ(0) = 0 and φ′(0) ⩽ 1.
Recall: E

[
Zt
∣∣∣Zs = x

]
= x φ′s,t(0).

Conclusion: φs,t ’s DW-point is at τ = 0 iff
t 7→ E

[
Zt
∣∣∣Z0 = 1

]
is non-increasing.

Ts
0 := inf {t ⩾ s : Zt = 0}.Extinction time:

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022) [Ts
0 < +∞]

Suppose the Laplace exponents form an AC reverse EF (φs,t)

with the DW-point τ = 0 and with the H. v. f. G.
If
∫ +∞

0 G′′(∞, t) dt = −∞, then q∞(s) := limt→+∞ φs,t(∞) = 0 and

P
[
Ts

0 < +∞
∣∣∣Zs = x

]
= e−q∞(s) = 1 ∀ x ∈ (0,+∞), s ⩾ 0.hence



CB-processes - 21 - DW-point at τ = ∞

Theorem [monotonicity] (T. Hasebe, J.L. Pérez, P.G., 2022)
Let (Zt) be a CB-process with associated topological REF (φs,t). TFAE:
(i) the DW-point of all φs,t ’s is at ∞;

(ii) P
[
Zu ⩽ Zt

∣∣∣Zs = x
]
= 1 whenever 0 ⩽ s ⩽ u ⩽ t and x > 0;

(iii) for any (s, t) ∈ ∆ and for some (and hence all) x > 0,

we have P
[
Zt ⩾ x

∣∣∣Zs = x
]
= 1.

Ts
∞ := inf {t ⩾ s : Zt = +∞}.Explosion time:

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022) [Ts
∞ < +∞]

Suppose the Laplace exponents form an AC reverse EF (φs,t)

with the DW-point τ = ∞ and with the H. v. f. G.∫ +∞

0
G(0, t) exp

(∫ t

0 G′(∞, s)ds
)
dt = +∞,If (∗)

then q0(s) := limt→+∞ φs,t(0) = +∞, and hence

P
[
T s
∞ < +∞

∣∣∣Zs = x
]
= 1 − e−q0(s) = 1 for any s ⩾ 0 and x ∈ (0,+∞).



Spatial embedding - 22 -
of Galton – Watson processes

in CB-processes

Consider again a branching process (Xt)
on the discrete state spaceN∗0 = {0,1,2, . . .} ∪ {+∞},

with the transition probabilities ps,t(k ) := P
[
Xt = k

∣∣∣Xs = 1
]
.

Definition (spatial embedding) M. Jiřina, 1958

We say that (Xt) embeds in (or extends to)
a CB-process (Zt) on [0,+∞] with the transition kernels (ks,t)

ks,t(1; {k }) = ps,t(k ) for any k ∈N∗0 and all (s, t) ∈ ∆.if

Theorem (T. Hasebe, J.L. Pérez, P.G., 2022)

(Xt) embeds into some CB-process (Zt) iff
the probability generating functions (Fs,t) of (Xt)

have common DW-point at τ = 0.

The Laplace exponents of (Zt) are given by exp
(
−φs,t(ζ)

)
= Fs,t(e−ζ).


