Rectangular finite free probability theory

Aurelien Gribinski

Contents

1 Motivation and context

- From free probability to finite free probability
- Motivation:generalization of free probability to rectangular random matrices

2 New results for rectangular matrices

- Polynomial definition and real-rootedness
- Investigating the quadratic inequality

■ New monotonicity properties of special polynomials

- Towards a rectangular finite free probability framework

3 Conclusion and current work

- Conclusion
- Extending the convolution to continuous parameters
- Bivariate perspective and orthogonal polynomials
- Information theoretic approach

Contents

1 Motivation and context
■ From free probability to finite free probability
■ Motivation:generalization of free probability to rectangular random matrices

2 New results for rectangular matrices
■ Polynomial definition and real-rootedness
■ Investigating the quadratic inequality

- New monotonicity properties of special polynomials
- Towards a rectangular finite free probability framework

3 Conclusion and current work

- Conclusion

■ Extending the convolution to continuous parameters

- Bivariate perspective and orthogonal polynomials

■ Information theoretic approach

Free probability summary

Theorem (Voiculescu)

For A_{d} and $B_{d} d \times d$ symmetric matrices whose eigenvalue distributions converge to μ_{a} and μ_{b}, and Q_{d} a random orthogonal matrix, then the eigenvalue distribution of $A_{d}+Q_{d}^{T} B_{d} Q_{d}$ is converging to $\mu_{a} \boxplus \mu_{b}$, the free sum measure.

Theorem (Voiculescu)

Define the Cauchy and R-transform of a Borel measure μ on \mathbb{R} as

$$
\begin{gathered}
\mathcal{G}_{\mu}(x)=\int_{t \in \mathbb{R}} \frac{d \mu(t)}{x-t}, \quad \text { for } \operatorname{lm}(x)>0 \\
\mathcal{R}_{\mu}(x)=\mathcal{G}_{\mu}^{-1}(x)-\frac{1}{x}=\mathcal{G}_{\mu}^{-1}(x)-\mathcal{G}_{\mu_{0}}^{-1}(x) \\
\mathcal{R}_{\mu_{a} \boxplus \mu_{b}}(x)=\mathcal{R}_{\mu_{a}}(x)+\mathcal{R}_{\mu_{b}}(x)
\end{gathered}
$$

Finite free sum

Definition (following Marcus,Spielman,Srivastava)

For A and $B d \times d$ hermitian matrices, we define the additive convolution as

$$
\chi_{A} \boxplus_{d} \chi_{B}:=\mathbb{E}_{Q \in \mathcal{O}_{d}}\left[\chi_{A+Q^{\top} B Q}\right]
$$

Theorem (MSS)

The additive convolution of two hermitian matrices is real-rooted. If $p(x)=\sum_{i=0}^{d} a_{i} x^{d-i}$ and $q(x)=\sum_{i=0}^{d} b_{i} x^{d-1}$:

$$
\begin{aligned}
p \boxplus_{d} q & =\frac{1}{d!} \sum_{k=0}^{d} D^{k} p(x) D^{d-k} p(0) \\
& =\sum_{k=0}^{d} x^{d-k} \sum_{i+j=k} \frac{(d-i)!(d-j)!}{d!(d-k)!} a_{i} b_{j}
\end{aligned}
$$

Finite free linearization

To p of degree d, we associate $\mu_{p}:=\frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_{i}(p)}$, and $\mathcal{R}_{p}:=\mathcal{R}_{\mu_{p}}$

Theorem (from MSS)

For all $w>0$ and real-rooted polynomials p and q of degree at most d,

$$
\mathcal{R}_{p \boxplus_{d q}}(w) \leq \mathcal{R}_{p}(w)+\mathcal{R}_{q}(w)
$$

with equality only when p or q has only one root up to multiplicity.

Theorem (from Marcus)

There is a polynomial of degree $d-1 \mathcal{R}_{p}^{d}$ whose coefficients, finite free cumulants, are functions of the coefficients of p such that (with μ_{p} fix)

$$
\begin{aligned}
\mathcal{R}_{p}^{d}(s) & \rightarrow_{d \rightarrow \infty} \mathcal{R}_{p}(s) \\
\mathcal{R}_{p \boxplus_{d q}}^{d}(s) & =\mathcal{R}_{p}^{d}(s)+\mathcal{R}_{q}^{d}(s)
\end{aligned}
$$

Polynomials as independent random variables

- $\mathbb{E}\left[p \boxplus_{d} q\right]=\mathbb{E}[p]+\mathbb{E}[q]$
- $\operatorname{Var}\left[p \boxplus_{d} q\right]=\operatorname{Var}[p]+\operatorname{Var}[q]$
- $p=(x-\mu)^{d}$ constant polynomial in dimension d
- $p=(x-\mu)^{d} \Longleftrightarrow R_{p}^{d}(s)=\mu$
- $p(x)=H_{d}((x-\mu) \sqrt{d-1} / \sigma) \Longleftrightarrow \mathcal{R}_{p}^{d}(s)=\mu+s \sigma^{2}$ where H_{d} are the Hermite family $=$ finite free Gaussians.

Asymptotic distributions

Proposition

(Law of large numbers)(Marcus) Let p_{1}, p_{2}, \ldots be a sequence of degree d real-rooted polynomials whose roots have fixed mean μ, and uniformly bounded variance. Write $R_{1 / N}(p)(x):=N^{-d} p(N x)$. Then,

$$
\lim _{N \rightarrow \infty} R_{7 / N}\left(\left[p_{1} \boxplus_{d} p_{2} \ldots \boxplus_{d} p_{N}\right]\right)(x)=(x-\mu)^{d}
$$

Proposition

(Central limit theorem)(Marcus) Consider as above $p_{i}(x)=\prod_{j}\left(x-r_{i, j}\right)$ such that $\sum_{j} r_{i, j}=0, \frac{1}{d} \sum_{j} r_{i, j}^{2}=\sigma^{2}$. Then

$$
\lim _{N \rightarrow \infty} R_{1 / \sqrt{N}}\left(\left[p_{1} \boxplus_{d} p_{2} \ldots . \boxplus_{d} p_{N}\right]\right)(x) \approx H_{d}\left((x-\mu) \sqrt{\frac{d-1}{\sigma^{2}}}\right)
$$

Contents

1 Motivation and context
■ From free probability to finite free probability
■ Motivation:generalization of free probability to rectangular random matrices

2 New results for rectangular matrices
■ Polynomial definition and real-rootedness
■ Investigating the quadratic inequality
■ New monotonicity properties of special polynomials

- Towards a rectangular finite free probability framework

3. Conclusion and current work

- Conclusion

■ Extending the convolution to continuous parameters

- Bivariate perspective and orthogonal polynomials
- Information theoretic approach

Rectangular free probability

Theorem (Voiculescu and Benaych Georges)

Let, for all $d \geq 1, Q_{d}$ and R_{d} be orthogonal Haar random $\left(q_{1}(d) \times q_{1}(d)\right.$ and $\left.q_{2}(d) \times q_{2}(d)\right), A_{d}$ and B_{d} be independent rectangular $q_{1}(d) \times q_{2}(d)$ random matrices with $q_{1}(d) \geq q_{2}(d)$, and such that the symmetrizations of the singular law of A_{d} and B_{d} converge in probability to μ_{a} and μ_{b} respectively. Then the symmetrization of the singular law of $A_{d}+Q_{d}^{\top} B_{d} R_{d}$ converges in probability to a symmetric probability measure on the real line, denoted by $\mu_{\mathrm{a}} \boxplus^{\lambda} \mu_{\mathrm{b}}$, which depends only on $\mu_{a}, \mu_{\mathrm{b}}$, and $\lambda:=\lim _{n \rightarrow \infty} \mathrm{q}_{2}(\mathrm{~d}) / \mathrm{q}_{1}(\mathrm{~d})$. Notice that $\lambda \in[0,1]$.

It gives a universal behavior for singular values of sums of large random rectangular matrices.

Adapted rectangular tools

Definition (from BG)

The λ-rectangular Cauchy transform for a symmetric compact measure μ (and x in a positive neighborhood of 0) is given by

$$
H_{\mu}^{\lambda}(x)=\lambda\left[\mathcal{G}_{\mu}\left(\frac{1}{\sqrt{x}}\right)\right]^{2}+(1-\lambda) \sqrt{x} \mathcal{G}_{\mu}\left(\frac{1}{\sqrt{x}}\right)
$$

Definition (from BG)

For x small enough, let
$U^{\lambda}(x):=\frac{-\lambda-1+\left[(\lambda+1)^{2}+4 \lambda x\right]^{1 / 2}}{2 \lambda}$. The rectangular R-transform is given by

$$
\mathcal{R}_{\mu}^{\lambda}(x):=U^{\lambda}\left(\frac{x}{\left[H_{\mu}^{\lambda}\right]^{-1}(x)}-1\right)
$$

Linearization property

Theorem (from BG)

The rectangular R-transform linearizes the rectangular additive convolution for symmetric measures μ_{1} and μ_{2} :

$$
\mathcal{R}_{\mu_{1} \boxplus^{\lambda} \mu_{2}}^{\lambda}(x)=\mathcal{R}_{\mu_{1}}^{\lambda}(x)+\mathcal{R}_{\mu_{2}}^{\lambda}(x)
$$

Can we define polynomial tools dealing with singular values of rectangular matrices by analogy?

Contents

1 Motivation and context
■ From free probability to finite free probability
■ Motivation:generalization of free probability to rectangular random matrices

2 New results for rectangular matrices
■ Polynomial definition and real-rootedness
■ Investigating the quadratic inequality

- New monotonicity properties of special polynomials
- Towards a rectangular finite free probability framework

3 Conclusion and current work

- Conclusion

■ Extending the convolution to continuous parameters

- Bivariate perspective and orthogonal polynomials

■ Information theoretic approach

From eigenvalues to singular values

Definition (rectangular singular free sum)

For $m \times d$ rectangular matrices A and $B, \lambda=d / m$, define

$$
\begin{aligned}
\chi_{A^{\top} A} \boxplus_{d, \lambda} \chi_{B^{\top} B} & :=\mathbb{E}_{R \in \mathcal{O}_{m}, Q \in \mathcal{O}_{d}}\left\{\chi_{\left.\left(A+Q B R^{T}\right)\left(A+Q B R^{T}\right)^{T}\right\}}\right. \\
& =\iint_{\mathcal{O}_{m} \times \mathcal{O}_{d}} \operatorname{det}\left[x I-\left(A+Q B R^{T}\right)^{T}\left(A+Q B R^{T}\right)\right] d R d Q
\end{aligned}
$$

where the measures are Haar on the respective orthogonal groups.

Remark

Free probability: the symmetrization of the singular distribution of $A+Q B R^{T}$ (roots of $\left.\chi\left(A+Q B R^{T}\right)\left(A+Q B R^{T}\right)^{\top}\right)$ is close to the Benaych-Georges' rectangular free sum $\mu_{A} \boxplus \frac{d}{m} \mu_{B}$ when d, m are large

Polynomial expansion

Theorem (Algebraic form)

Consider two polynomials p and q with only real nonnegative roots (they can be written as $\chi_{A^{\top} A}$ and $\chi_{B^{\top} B}$ for some $m \times d$ matrices A and B). If we write $p(x)=\sum_{i=0}^{d} a_{i} x^{d-i}$ and $q(x)=\sum_{i=0}^{d} b_{i} x^{d-i}$ the following holds

$$
p \boxplus_{d, \lambda} q=\sum_{k=0}^{d} x^{d-k} \sum_{i+j=k} \frac{(d-i)!(d-j)!}{d!(d-k)!} \frac{(m-i)!(m-j)!}{m!(m-k)!} a_{i} b_{j}
$$

Remark

This shows the bilinearity of the operation $\boxplus_{d, \lambda}$. We can extend the definition to polynomials of degree at most d through this formula.

Derivative form

Consider again polynomials p and q with nonnegative real roots.
Lemma (Derivative sum)
If we write $p(x, y)=y^{m-d} p(x y)$ and $q(x, y)=y^{m-d} q(x y)$,
$\Delta_{\lambda}(p):=x \delta_{x}^{2}+(m-d+1) \delta_{x}$, then

$$
\begin{gathered}
{\left[p \boxplus_{d, \lambda} q\right](x)=\frac{(m-d)!}{d!m!} \sum_{k=0}^{d}\left[\left(\partial_{x} \partial_{y}\right)^{d-k} p\right](x, 1)\left[\left(\partial_{x} \partial_{y}\right)^{k} q\right](0,1)} \\
{\left[p \boxplus_{d, \lambda} q\right](x)=\left.\frac{(m-d)!}{d!m!} \sum_{k=0}^{d} \Delta_{\lambda}^{k} p(x)\left[\Delta_{\lambda}^{d-k} q(x)\right]\right|_{x=0}}
\end{gathered}
$$

Contents

1 Motivation and context
■ From free probability to finite free probability
■ Motivation:generalization of free probability to rectangular random matrices

2 New results for rectangular matrices

- Polynomial definition and real-rootedness

■ Investigating the quadratic inequality
■ New monotonicity properties of special polynomials

- Towards a rectangular finite free probability framework

3. Conclusion and current work

- Conclusion

■ Extending the convolution to continuous parameters

- Bivariate perspective and orthogonal polynomials
- Information theoretic approach

R-transform inequality

Consider p and q polynomials of degree at most d with nonnegative roots, and $\operatorname{Sp}(x):=p\left(x^{2}\right)$

Theorem (Marcus,G)

For $s>0$,

$$
\mathcal{R}_{\left.\mathbb{S}\left[p \boxplus_{d, \lambda}\right]\right]}^{\lambda}(s) \leq \mathcal{R}_{\mathbb{S} p}^{\lambda}(s)+\mathcal{R}_{\mathbb{S} q}^{\lambda}(s)
$$

with equality only when $\mathrm{p}=x^{d}$ or $\mathrm{q}=x^{d}$.
Remark

$$
\mathcal{R}_{\mu_{\mathrm{S} p} \boxplus_{\lambda} \mu_{\mathrm{Sq}}}^{\lambda}(s)=\mathcal{R}_{\mathbb{S p} p}^{\lambda}(s)+\mathcal{R}_{\mathbb{S} q}^{\lambda}(s)
$$

Polynomial version

Consider $V^{n} p(x)=x^{n} p(x)$.

Lemma

The following differential operator is real rooted:

$$
\begin{equation*}
W_{\alpha}^{m-d} p=[\mathbb{S} p]\left[S V^{m-d} p\right]-\alpha^{2}[\mathbb{S} p]^{\prime}\left[\mathbb{S} V^{m-d} p\right]^{\prime} \tag{1}
\end{equation*}
$$

Theorem (Polynomial form of the inequality)

$$
\Theta_{\alpha}^{m-d}\left(p \boxplus_{d, \lambda} q\right) \leq \Theta_{\alpha}^{m-d}(p)+\Theta_{\alpha}^{m-d}(q)-(m+d) \alpha
$$

for all real numbers $\alpha>0$, where

$$
\Theta_{\alpha}^{m-d}(p):=\sqrt{(m-d)^{2} \alpha^{2}+\left[\operatorname{maxroot}\left\{W_{\alpha}^{m-d} p\right\}\right]^{2}} .
$$

Contents

1 Motivation and context
■ From free probability to finite free probability
■ Motivation:generalization of free probability to rectangular random matrices

2 New results for rectangular matrices
■ Polynomial definition and real-rootedness
■ Investigating the quadratic inequality
■ New monotonicity properties of special polynomials

- Towards a rectangular finite free probability framework

3 Conclusion and current work

- Conclusion

■ Extending the convolution to continuous parameters

- Bivariate perspective and orthogonal polynomials
- Information theoretic approach

Gegenbauer polynomials and convolution

Consider the Gegenbauer polynomials, $C_{d}^{(\alpha)}(x)$, the collection of polynomials orthogonal with respect to $w(x)=\left(1-x^{2}\right)^{\alpha-1 / 2}$ on the interval $[-1,1]$. For all $\lambda, \mu>0, m \geq d, d \geq 1$:

$$
\binom{m}{d}\left[(x-\lambda)^{d} \boxplus_{d, \lambda}(x-\mu)^{d}\right]=(\lambda \mu)^{d / 2} C_{d}^{m-d+1}\left(\frac{x-(\lambda+\mu)}{2 \sqrt{\lambda \mu}}\right) .
$$

Monotonicity of Cauchy transforms

Theorem (Monotonicity with moving parameter)
Define for all $\theta>0$:

$$
\gamma_{\theta}^{d}:=\operatorname{maxroot}\left\{C_{d}^{(1+\theta d)}(x)\right\}
$$

Then for $x>\max \left\{\gamma_{\theta}^{d}, \gamma_{\theta}^{(d+1)}\right\}$

$$
\mathcal{G}_{C_{d}^{(1+\theta d)}}(x) \leq \mathcal{G}_{C_{d+1}^{(1+\theta[d+1])}}(x)
$$

Corollary

The sequence $\left(\gamma_{\theta}^{d}\right)_{d}$ is monotone increasing, and for $\gamma_{\theta}=\frac{\sqrt{2 \theta+1}}{\theta+1}$.

$$
\lim _{d \rightarrow \infty} \gamma_{\theta}^{d}=\gamma_{\theta}
$$

Contents

1 Motivation and context
■ From free probability to finite free probability
■ Motivation:generalization of free probability to rectangular random matrices

2 New results for rectangular matrices
■ Polynomial definition and real-rootedness
■ Investigating the quadratic inequality

- New monotonicity properties of special polynomials
- Towards a rectangular finite free probability framework

3 Conclusion and current work

- Conclusion

■ Extending the convolution to continuous parameters

- Bivariate perspective and orthogonal polynomials

■ Information theoretic approach

Rectangular finite R-transform

Fix a symmetric discrete measure $\mu_{\mathbb{S p}}$. We can build a polynomial of degree $d \mathcal{R}_{\mathbb{S p}}^{d, \lambda}(s)$ such that:

Theorem (Convergence)

$$
\mathcal{R}_{\mathbb{S} p}^{d, \lambda}(s) \rightarrow_{d \rightarrow \infty} \mathcal{R}_{\mu_{\mathbb{S p}}}^{\lambda}(s)
$$

Explictly, consider for a fix p and d, the limit of $\mathcal{R}_{\mathbb{S} p^{n}}^{d n}(s)$ in n.
Theorem (Linearization)

$$
\mathcal{R}_{\mathbb{S}\left[p \boxplus_{d, \lambda} d\right]}^{d, \lambda}(s)=\mathcal{R}_{\mathbb{S} p}^{d, \lambda}(s)+\mathcal{R}_{\mathbb{S} q}^{d, \lambda}(s)
$$

It is the direct analogue of the free probability additivity property that defines the free R-rectangular transform. Rectangular finite free cumulants.
$■ \mathbb{E}\left[\mathbb{S}\left[p \boxplus_{d, \lambda} q\right]\right]=0, \quad \operatorname{Var}\left[\mathbb{S}\left[p \boxplus_{d, \lambda} q\right]\right]=\operatorname{Var}[\mathbb{S} p]+\operatorname{Var}[\mathbb{S} q]$

- $\mathbb{S} p=x^{2 d}$ constant polynomial in dimension d
- $p(x)=L_{d}{ }^{(m-d)}\left(\frac{x m}{\sigma^{2}}\right) \Longleftrightarrow \mathcal{R}_{\mathbb{S} p}^{d, \lambda}(s)=m \sigma^{2} s$ where L_{d} are the Laguerre family $=$ rectangular finite free Gaussians.

Proposition (Central limit theorem)

Let $p_{1}, p_{2} \ldots$. be a sequence of degree d with real nonnegative roots and same mean σ^{2}, with

$$
p_{i}=\prod_{j}\left(x-r_{i, j}^{2}\right) \quad \frac{1}{d} \sum_{j} r_{i, j}^{2}=\sigma^{2}
$$

Then

$$
\lim _{N \rightarrow \infty} R_{1 / \sqrt{N}}\left(\mathbb{S}\left[p_{1} \boxplus_{d, \lambda} \cdots \boxplus_{d, \lambda} p_{N}\right]\right)(x) \approx L_{d}^{(m-d)}\left(\frac{x^{2} m}{\sigma}\right)
$$

For $R_{\alpha}(p)=\prod_{j}\left(x-\alpha r_{i, j}^{2}\right)$.

Contents

1 Motivation and context
■ From free probability to finite free probability
■ Motivation:generalization of free probability to rectangular random matrices

2 New results for rectangular matrices
■ Polynomial definition and real-rootedness
■ Investigating the quadratic inequality

- New monotonicity properties of special polynomials
- Towards a rectangular finite free probability framework

3 Conclusion and current work

- Conclusion
- Extending the convolution to continuous parameters
- Bivariate perspective and orthogonal polynomials

■ Information theoretic approach

Conclusion

We found a new bridge between algebra and analysis, roots of polynomials and probability distributions. It is just the beginning...

Contents

1 Motivation and context
■ From free probability to finite free probability
■ Motivation:generalization of free probability to rectangular random matrices

2 New results for rectangular matrices
■ Polynomial definition and real-rootedness
■ Investigating the quadratic inequality

- New monotonicity properties of special polynomials
- Towards a rectangular finite free probability framework

3 Conclusion and current work

- Conclusion

■ Extending the convolution to continuous parameters

- Bivariate perspective and orthogonal polynomials
- Information theoretic approach

Defilintion of the extension

Definition

Consider $z \geq-1$, write $p(x)=\sum_{i=0}^{d} a_{i} x^{d-i}$ and $q(x)=\sum_{i=0}^{d} b_{i} x^{d-i}$,

$$
\begin{aligned}
& p \boxplus_{d}^{z} a:=\sum_{k=0}^{d} x^{d-k} \sum_{i+j=k} c_{i, j}(z) \\
& c_{i, j}(z):=\frac{(d-i)!(d-j)!}{d!(d-k)!} \frac{\Gamma[d+z+1-i] \Gamma[d+z+1-j]}{\Gamma[d+z+1] \Gamma[d+z+1-k]} a_{i} b_{j}
\end{aligned}
$$

Conjecture

$p \boxplus_{d}^{z} q$ is real rooted in x with nonnegative roots if p and q are.

Remark

$\mathbb{S}\left[p \boxplus_{d}^{-1 / 2} q\right]=\mathbb{S p} \boxplus_{2 d} \mathbb{S} q$ and $\lim _{z \rightarrow \infty} p \boxplus_{d}^{z} q=p \boxplus_{d} q$

Comparing convolutions

Conjecture

There is continuous majorization (two polynomials majorizing mean that the vector of their ordered roots do), for $-1 / 2<z_{1}<z_{2}$:

$$
p \boxplus_{d}^{z_{1}} q \succeq p \boxplus_{d}^{z_{2}} q
$$

Corollary

For all p, q in $\mathbb{P}_{\leq d^{\prime}}^{+}$and z_{1}, z_{2} such that $z_{1}<z_{2}$ we have:

$$
\operatorname{maxroot}\left\{U_{\alpha} \mathbb{S}\left[p \boxplus_{d}^{z_{1}} q\right]\right\} \leq \operatorname{maxroot}\left\{U_{\alpha} \mathbb{S}\left[p \boxplus_{d}^{z_{2}} q\right]\right\}
$$

where $U_{\alpha}(p):=p-\alpha p^{\prime}$

Contents

1 Motivation and context
■ From free probability to finite free probability
■ Motivation:generalization of free probability to rectangular random matrices

2 New results for rectangular matrices
■ Polynomial definition and real-rootedness
■ Investigating the quadratic inequality

- New monotonicity properties of special polynomials
- Towards a rectangular finite free probability framework

3 Conclusion and current work

- Conclusion

■ Extending the convolution to continuous parameters

- Bivariate perspective and orthogonal polynomials
- Information theoretic approach

Bivariate convolution

$$
p \boxplus_{d} q[x, z]:=\binom{d+z}{d} p \boxplus_{d}^{z} a(x) \in \mathbb{R}[x, z]
$$

Conjecture

For all I, $\partial_{z}^{\prime}\left(p \boxplus_{d} q[x, z]\right)$ is real-rooted in x. Also, $\partial_{z}\left(p \boxplus_{d} q[x, z]\right)$ and $\partial_{x}\left(p \boxplus_{d} q[x, z]\right)$ interlace. $p \boxplus_{d}^{z} q$ is real-rooted in z for x in some interval between the roots of p and q.

Orthogonal polynomials

$$
(x-\lambda)^{d} \boxplus_{d}(x-\mu)^{d}[., z] \approx C_{d}^{z+1}\left(\frac{x-(\lambda+\mu)}{\sqrt{\lambda \mu}}\right)
$$

Theorem

For $x \in[-1,1], C_{d}^{z}(x)$ is real-rooted in z. For $x \in[0,+\infty], L_{d}^{z}(x)$ is real-rooted in z. Also, $\partial_{z}^{\prime} C_{d}^{z}(x)$ and $\partial_{z}^{\prime} L_{d}^{z}(x)$ are real-rooted polynomials in x and there is interlacing between derivatives in z and x.

Remark (Orthogonality support)

For an orthogonal family of polynomials $P_{d}^{z}(x)$, polynomial in the parameter z, orthogonal with respect to μ, then it seems that for $x \in \operatorname{Supp}(\mu), P_{d}^{z}(x)$ is real-rooted in z.

Contents

1 Motivation and context
■ From free probability to finite free probability
■ Motivation:generalization of free probability to rectangular random matrices

2 New results for rectangular matrices
■ Polynomial definition and real-rootedness
■ Investigating the quadratic inequality

- New monotonicity properties of special polynomials
- Towards a rectangular finite free probability framework

3 Conclusion and current work

- Conclusion

■ Extending the convolution to continuous parameters

- Bivariate perspective and orthogonal polynomials

■ Information theoretic approach

Finite free entropy and information

Definition (Voiculescu)

For a measure μ with no atoms,

$$
h(\mu):=\iint \log |x-y| d \mu(x) d \mu(y)
$$

Definition

For $p=\prod_{i=1}^{d}\left(x-\lambda_{i}\right)$ polynomial with distinct roots:

$$
\begin{aligned}
& h(p):=\frac{1}{\binom{d}{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right| \\
& J_{k}(p):=\frac{1}{\binom{d}{2}} \sum_{i<j} \frac{1}{\left(\lambda_{i}-\lambda_{j}\right)^{2 k}}
\end{aligned}
$$

Dilation monotonicity

For $p=\prod_{i=1}^{d}\left(x-\lambda_{i}\right)$, define $p_{t}:=\prod_{i=1}^{d}\left(x-t \lambda_{i}\right)$.

Theorem

For $t>s>0$

$$
h\left(p \boxplus_{d} q_{t}\right) \geq h\left(p \boxplus_{d} q_{s}\right) \geq h(p)
$$

Conjecture

$$
h\left(p \boxplus_{d}^{z} q_{t}\right) \geq h\left(p \boxplus_{d}^{z} q_{s}\right) \geq h(p)
$$

Conjecture

$h\left(p_{\sqrt{t}} \boxplus_{d} q_{\sqrt{1-t}}\right)$ is concave in t and $J_{k}\left(p_{\sqrt{t}} \boxplus_{d} q_{\sqrt{1-f}}\right)$ are convex.
Equivalent of $f(\sqrt{\dagger} X+\sqrt{1-\dagger} Y)$ for independent/free random variables X, Y. Rectangular version?

Inequalities

Conjecture (Power entropy inequalities)

For p, q real rooted polynomials, we have

$$
e^{2 h\left(p \boxplus_{d} q\right)} \geq e^{2 h(p)}+e^{2 h(q)}
$$

with equality only for p,q Hermite polynomials.
Rectangular version?
Similarly, we could derive Stam's inequalities.

Conjecture

For $\mathrm{p}:=\prod\left(x-\lambda_{i}\right)$ with d distinct real numbers λ_{i}, denote by $S_{i}^{k}(p):=\sum_{j \neq i} \frac{1}{\left(\lambda_{i}-\lambda_{j}\right)^{k}}$ we have

$$
\operatorname{Var}(p) \sum_{i} S_{i}^{1}(p) S_{i}^{3}(p) \geq K(d) \sum_{i} S_{i}^{2}(p)
$$

