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Motivation and context

From free probability to finite free probability

Free probability summary

Theorem (Voiculescu)

For Ad and Bd d × d symmetric matrices whose eigenvalue distributions

converge to µa and µb,and Qd a random orthogonal matrix, then the

eigenvalue distribution of Ad + QT
dBdQd is converging to µa ⊞ µb, the

free sum measure.

Theorem (Voiculescu)

Define the Cauchy and R-transform of a Borel measure µ on R as

Gµ(x) =

∫
t∈R

dµ(t)

x − t
, for Im(x) > 0

Rµ(x) = G−1
µ (x)− 1

x
= G−1

µ (x)− G−1
µ0

(x)

Rµa⊞µb
(x) = Rµa

(x) +Rµb
(x)
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From free probability to finite free probability

Finite free sum

Definition (following Marcus,Spielman,Srivastava)

For A and B d × d hermitian matrices, we define the additive

convolution as

χA ⊞d χB := EQ∈Od
[χA+QT BQ]

Theorem (MSS)

The additive convolution of two hermitian matrices is real-rooted.If

p(x) =
∑

d

i=0
aix

d−i and q(x) =
∑

d

i=0
bix

d−i :

p ⊞d q =
1

d!

d∑
k=0

D
k
p(x)Dd−k

p(0)

=
d∑

k=0

x
d−k

∑
i+j=k

(d − i)!(d − j)!

d!(d − k)!
aibj
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From free probability to finite free probability

Finite free linearization

To p of degree d, we associate µp := 1

d

∑
d

i=1
δλi(p), and Rp := Rµp

Theorem (from MSS)

For all w > 0 and real-rooted polynomials p and q of degree at most d,

Rp⊞dq(w) ≤ Rp(w) +Rq(w)

with equality only when p or q has only one root up to multiplicity.

Theorem (from Marcus)

There is a polynomial of degree d − 1 Rd
p whose coefficients, finite free

cumulants, are functions of the coefficients of p such that (with µp fix)

Rd
p(s) →d→∞ Rp(s)

Rd
p⊞dq(s) = Rd

p(s) +Rd
q(s)
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Polynomials as independent random variables

E[p ⊞d q] = E[p] + E[q]
Var[p ⊞d q] = Var[p] + Var[q]

p = (x − µ)d constant polynomial in dimension d

p = (x − µ)d ⇐⇒ Rd
p(s) = µ

p(x) = Hd((x − µ)
√

d − 1/σ) ⇐⇒ Rd
p(s) = µ+ sσ2 where Hd

are the Hermite family = finite free Gaussians.
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Asymptotic distributions

Proposition

(Law of large numbers)[Marcus] Let p1, p2, ... be a sequence of degree

d real-rooted polynomials whose roots have fixed mean µ, and

uniformly bounded variance. Write R1/N(p)(x) := N−dp(Nx). Then,

lim
N→∞

R1/N([p1 ⊞d p2....⊞d pN])(x) = (x − µ)d

Proposition

(Central limit theorem)[Marcus] Consider as above pi(x) =
∏

j
(x − ri,j)

such that
∑

j
ri,j = 0,

1

d

∑
j
r2
i,j = σ2. Then

lim
N→∞

R
1/
√

N
([p1 ⊞d p2....⊞d pN])(x) ≈ Hd

(
(x − µ)

√
d − 1

σ2

)
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Rectangular free probability

Theorem (Voiculescu and Benaych Georges)

Let, for all d ≥ 1, Qd and Rd be orthogonal Haar random

(q1(d)× q1(d) and q2(d)× q2(d)),Ad and Bd be independent

rectangular q1(d)× q2(d) random matrices with q1(d) ≥ q2(d), and

such that the symmetrizations of the singular law of Ad and Bd

converge in probability to µa and µb respectively. Then the

symmetrization of the singular law of Ad + QT
dBdRd converges in

probability to a symmetric probability measure on the real line, denoted

by µa ⊞λ µb, which depends only on µa, µb, and

λ := limn→∞ q2(d)/q1(d). Notice that λ ∈ [0, 1].

It gives a universal behavior for singular values of sums of large random

rectangular matrices.



W
a

te
rm

a
rk

Rectangular finite free probability theory

Motivation and context

Motivation:generalization of free probability to rectangular random matrices

Adapted rectangular tools

Definition (from BG)

The λ-rectangular Cauchy transform for a symmetric compact measure

µ (and x in a positive neighborhood of 0) is given by

H
λ
µ(x) = λ

[
Gµ(

1√
x
)
]2

+ (1 − λ)
√

xGµ(
1√
x
)

Definition (from BG)

For x small enough, let

Uλ(x) :=
−λ−1+

[
(λ+1)2+4λx

]1/2

2λ .The rectangular R-transform is given by

Rλ
µ(x) := U

λ
(

x

[Hλ
µ]

−1(x)
− 1

)
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Motivation:generalization of free probability to rectangular random matrices

Linearization property

Theorem (from BG)

The rectangular R-transform linearizes the rectangular additive

convolution for symmetric measures µ1 and µ2:

Rλ
µ1⊞λµ2

(x) = Rλ
µ1
(x) +Rλ

µ2
(x)

Can we define polynomial tools dealing with singular values of

rectangular matrices by analogy?
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New results for rectangular matrices

Polynomial definition and real-rootedness

From eigenvalues to singular values

Definition (rectangular singular free sum)

For m × d rectangular matrices A and B, λ = d/m, define

χAT A ⊞d,λ χBT B := ER∈Om,Q∈Od

{
χ(A+QBRT )(A+QBRT )T

}
=

∫∫
Om×Od

det
[
xI − (A + QBR

T )T (A + QBR
T )
]

dRdQ

where the measures are Haar on the respective orthogonal groups.

Remark

Free probability: the symmetrization of the singular distribution of

A + QBRT (roots of χ(A+QBRT )(A+QBRT )T ) is close to the

Benaych-Georges’ rectangular free sum µA ⊞
d

m µB when d, m are large
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New results for rectangular matrices

Polynomial definition and real-rootedness

Polynomial expansion

Theorem (Algebraic form)

Consider two polynomials p and q with only real nonnegative roots

(they can be written as χAT A and χBT B for some m × d matrices A and

B). If we write p(x) =
∑

d

i=0
aix

d−i and q(x) =
∑

d

i=0
bix

d−i the

following holds

p ⊞d,λ q =
d∑

k=0

x
d−k

∑
i+j=k

(d − i)!(d − j)!

d!(d − k)!

(m − i)!(m − j)!

m!(m − k)!
aibj

Remark

This shows the bilinearity of the operation ⊞d,λ. We can extend the

definition to polynomials of degree at most d through this formula.
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Polynomial definition and real-rootedness

Derivative form

Consider again polynomials p and q with nonnegative real roots.

Lemma (Derivative sum)

If we write p(x, y) = ym−dp(xy) and q(x, y) = ym−dq(xy),
∆λ(p) := xδ2

x + (m − d + 1)δx , then

[p ⊞d,λ q](x) =
(m − d)!

d!m!

d∑
k=0

[(∂x∂y)
d−k

p](x, 1)[(∂x∂y)
k
q](0, 1)

[p ⊞d,λ q](x) =
(m − d)!

d!m!

d∑
k=0

∆k
λp(x)[∆d−k

λ q(x)]|x=0



W
a

te
rm

a
rk

Rectangular finite free probability theory

New results for rectangular matrices

Investigating the quadratic inequality

Contents

1 Motivation and context

From free probability to finite free probability

Motivation:generalization of free probability to rectangular

random matrices

2 New results for rectangular matrices

Polynomial definition and real-rootedness

Investigating the quadratic inequality

New monotonicity properties of special polynomials

Towards a rectangular finite free probability framework

3 Conclusion and current work

Conclusion

Extending the convolution to continuous parameters

Bivariate perspective and orthogonal polynomials

Information theoretic approach



W
a

te
rm

a
rk

Rectangular finite free probability theory

New results for rectangular matrices

Investigating the quadratic inequality

R-transform inequality

Consider p and q polynomials of degree at most d with nonnegative

roots, and Sp(x) := p(x2)

Theorem (Marcus,G)

For s > 0,

Rλ
S[p⊞d,λq](s) ≤ Rλ

Sp(s) +Rλ
Sq(s)

with equality only when p = xd or q = xd .

Remark

Rλ
µSp⊞λµSq

(s) = Rλ
Sp(s) +Rλ

Sq(s)
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Investigating the quadratic inequality

Polynomial version

Consider V np(x) = xnp(x).

Lemma

The following differential operator is real rooted:

W
m−d
α p = [Sp][SV

m−d
p]− α2[Sp]′[SV

m−d
p]′ (1)

Theorem (Polynomial form of the inequality)

Θm−d
α (p ⊞d,λ q) ≤ Θm−d

α (p) + Θm−d
α (q)− (m + d)α

for all real numbers α > 0, where

Θm−d
α (p) :=

√
(m − d)2α2 + [maxroot

{
W

m−d
α p

}
]2.
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New results for rectangular matrices

New monotonicity properties of special polynomials

Gegenbauer polynomials and convolution

Consider the Gegenbauer polynomials, C
(α)
d (x) , the collection of

polynomials orthogonal with respect to w(x) = (1 − x2)α−1/2 on the

interval [−1, 1]. For all λ, µ > 0,m ≥ d, d ≥ 1 :(
m

d

)
[(x − λ)d ⊞d,λ (x − µ)d ] = (λµ)d/2

C
m−d+1
d

(
x − (λ+ µ)

2
√
λµ

)
.
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Monotonicity of Cauchy transforms

Theorem (Monotonicity with moving parameter)

Define for all θ > 0:

γd
θ := maxroot

{
C
(1+θd)
d (x)

}
.

Then for x > max
{
γd
θ , γ

(d+1)
θ

}
G

C
(1+θd)
d

(x) ≤ G
C
(1+θ[d+1])
d+1

(x) .

Corollary

The sequence (γd
θ )d is monotone increasing, and for γθ =

√
2θ+1

θ+1
,

lim
d→∞

γd
θ = γθ
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New results for rectangular matrices

Towards a rectangular finite free probability framework

Rectangular finite R-transform

Fix a symmetric discrete measure µSp. We can build a polynomial of

degree d Rd,λ
Sp

(s) such that:

Theorem (Convergence)

Rd,λ
Sp

(s) →d→∞ Rλ
µSp

(s)

Explictly, consider for a fix p and d, the limit of Rdn,λ
Spn (s) in n.

Theorem (Linearization)

Rd,λ
S[p⊞d,λq](s) = Rd,λ

Sp
(s) +Rd,λ

Sq
(s)

It is the direct analogue of the free probability additivity property that

defines the free R-rectangular transform. Rectangular finite free

cumulants.
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New results for rectangular matrices

Towards a rectangular finite free probability framework

E
[
S[p ⊞d,λ q]

]
= 0, Var

[
S[p ⊞d,λ q]

]
= Var[Sp] + Var[Sq]

Sp = x2d constant polynomial in dimension d

p(x) = Ld
(m−d)( xm

σ2 ) ⇐⇒ Rd,λ
Sp

(s) = mσ2s where Ld are the

Laguerre family = rectangular finite free Gaussians.

Proposition (Central limit theorem)

Let p1, p2,... be a sequence of degree d with real nonnegative roots

and same mean σ2, with

pi =
∏

j

(x − r
2
i,j)

1

d

∑
j

r
2
i,j = σ2

Then

lim
N→∞

R
1/
√

N
(S[p1 ⊞d,λ ...⊞d,λ pN])(x) ≈ L

(m−d)
d (

x2m

σ
)

For Rα(p) =
∏

j
(x − αr2

i,j) .



W
a

te
rm

a
rk

Rectangular finite free probability theory

Conclusion and current work

Conclusion

Contents

1 Motivation and context

From free probability to finite free probability

Motivation:generalization of free probability to rectangular

random matrices

2 New results for rectangular matrices

Polynomial definition and real-rootedness

Investigating the quadratic inequality

New monotonicity properties of special polynomials

Towards a rectangular finite free probability framework

3 Conclusion and current work

Conclusion

Extending the convolution to continuous parameters

Bivariate perspective and orthogonal polynomials

Information theoretic approach



W
a

te
rm

a
rk

Rectangular finite free probability theory

Conclusion and current work

Conclusion

Conclusion

We found a new bridge between algebra and analysis, roots of

polynomials and probability distributions. It is just the beginning...
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Conclusion and current work

Extending the convolution to continuous parameters

Defiintion of the extension

Definition

Consider z ≥ −1, write p(x) =
∑

d

i=0
aix

d−i and q(x) =
∑

d

i=0
bix

d−i ,

p ⊞z
d q :=

d∑
k=0

x
d−k

∑
i+j=k

ci,j(z)

ci,j(z) :=
(d − i)!(d − j)!

d!(d − k)!

Γ[d + z + 1 − i]Γ[d + z + 1 − j]

Γ[d + z + 1]Γ[d + z + 1 − k]
aibj

Conjecture

p ⊞z
d q is real rooted in x with nonnegative roots if p and q are.

Remark

S[p ⊞−1/2

d q] = Sp ⊞2d Sq and limz→∞ p ⊞z
d q = p ⊞d q
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Comparing convolutions

Conjecture

There is continuous majorization (two polynomials majorizing mean that

the vector of their ordered roots do), for −1/2 < z1 < z2 :

p ⊞z1

d q ⪰ p ⊞z2

d q

Corollary

For all p, q in P+
≤d

,and z1, z2 such that z1 < z2 we have:

maxroot {UαS[p ⊞z1

d q]} ≤ maxroot {UαS[p ⊞z2

d q]}

where Uα(p) := p − αp′
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Conclusion and current work

Bivariate perspective and orthogonal polynomials

Bivariate convolution

p ⊞d q[x, z] :=

(
d + z

d

)
p ⊞z

d q(x) ∈ R[x, z]

Conjecture

For all l, ∂ l
z

(
p ⊞d q[x, z]

)
is real-rooted in x. Also, ∂z

(
p ⊞d q[x, z]

)
and

∂x

(
p ⊞d q[x, z]

)
interlace. p ⊞z

d q is real-rooted in z for x in some

interval between the roots of p and q.
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Bivariate perspective and orthogonal polynomials

Orthogonal polynomials

(x − λ)d ⊞d (x − µ)d [., z] ≈ C
z+1
d

(x − (λ+ µ)√
λµ

)
Theorem

For x ∈ [−1, 1], Cz
d(x) is real-rooted in z. For x ∈ [0,+∞], Lz

d(x) is

real-rooted in z. Also, ∂ l
zC

z
d(x) and ∂ l

zL
z
d(x) are real-rooted polynomials

in x and there is interlacing between derivatives in z and x.

Remark (Orthogonality support)

For an orthogonal family of polynomials Pz
d(x), polynomial in the

parameter z , orthogonal with respect to µ, then it seems that for

x ∈ Supp(µ), Pz
d(x) is real-rooted in z.
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Information theoretic approach

Finite free entropy and information

Definition (Voiculescu)

For a measure µ with no atoms,

h(µ) :=

∫ ∫
log|x − y|dµ(x)dµ(y)

Definition

For p =
∏

d

i=1
(x − λi) polynomial with distinct roots:

h(p) :=
1(
d

2

) ∑
i<j

log|λi − λj |

Jk(p) :=
1(
d

2

) ∑
i<j

1

(λi − λj)2k
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Information theoretic approach

Dilation monotonicity

For p =
∏

d

i=1
(x − λi), define pt :=

∏
d

i=1
(x − tλi).

Theorem

For t > s > 0

h(p ⊞d qt) ≥ h(p ⊞d qs) ≥ h(p)

Conjecture

h(p ⊞z
d qt) ≥ h(p ⊞z

d qs) ≥ h(p)

Conjecture

h(p√
t
⊞d q√

1−t
) is concave in t and Jk(p√

t
⊞d q√

1−t
) are convex.

Equivalent of f(
√

tX +
√

1 − tY ) for independent/free random

variables X,Y. Rectangular version?
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Inequalities

Conjecture (Power entropy inequalities)

For p, q real rooted polynomials, we have

e
2h(p⊞dq) ≥ e

2h(p) + e
2h(q)

with equality only for p,q Hermite polynomials.

Rectangular version?

Similarly, we could derive Stam’s inequalities.

Conjecture

For p :=
∏
(x − λi) with d distinct real numbers λi , denote by

Sk
i (p) :=

∑
j ̸=i

1

(λi−λj)k we have

Var(p)
∑

i

S
1
i (p)S

3
i (p) ≥ K (d)

∑
i

S
2
i (p)

With equality only for Hermite polynomials, and K (d) > 0.
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