On operator valued R-diagonal and Haar unitary elements

Ken Dykema (with John Griffin)

Texas A\&M University
February 20, 2024
Zooming in to UC-Berkeley Probabalistic Operator Algebra Seminar

Haar unitary and R-diagonal elements

We work in a tracial von Neumann algebra (\mathcal{M}, τ). Namely, \mathcal{M} is a von Neumann algebra and τ is a normal, faithful, tracial state on \mathcal{M}.

Note: some results described in this talk have non-tracial versions, but for simplicity we assume we are in the tracial setting.

A Haar unitary element is a unitary $u \in \mathcal{M}$ so that $\tau\left(u^{n}\right)=0$ for all $n \in \mathbb{Z} \backslash\{0\}$. This entails that τ of spectral measure of u is Haar measure on the unit circle.
A circular element is $z \in \mathcal{M}$ where $\operatorname{Re} z$ and $\operatorname{Im} z$ are free, centered semicircular elements with the same second moment.

Theorem [Voiculsecu '90]

If z is a circular element, then it has polar decomposition $z=u|z|$, where u is a Haar unitary and u and $|z|$ are $*$-free from each other.

R-diagonality

Free cumulants of a family of elements in \mathcal{M} were introduced by [Speicher '94].
[Nica, Speicher, '97] defined $a \in \mathcal{M}$ to be R-diagonal if all the cumulants of the pair $\left(a, a^{*}\right)$ vanish except for those corresponding to alternating patterns $\left(a, a^{*}, \ldots, a, a^{*}\right)$ and $\left(a^{*}, a, \ldots, a^{*}, a\right)$ of even length.

Proposition [Nica, Shlyakhtenko, Speicher '01]

An element $a \in \mathcal{M}$ is R-diagonal if and only if a has the same *-distribution as $u h$ (in some tracial von Neumann algebra), where u is a Haar unitary, $h \geq 0$ and where u and h are $*$-free.

In particular, Haar unitary elements and circular elements are R-diagonal.

R-diagonality (alternative formulation)

Definition [Boedihardjo, D., '18]

Given $\epsilon=(\epsilon(1), \ldots, \epsilon(n)) \in\{1, *\}^{n}$, the maximal alternating interval partition $\sigma(\epsilon)$ of ϵ is the partition into the largest possible interval blocks such that each block is alternating.
E.g., $\epsilon=(\underbrace{*, 1, *}, \underbrace{*, 1}, \underbrace{1, *}) \Longrightarrow \sigma(\epsilon)=\{\{1,2,3\},\{4,5\},\{6,7\}\}$.

Prop. (equivalent, mild reformulation of part of [NiShISp '01])
$a \in \mathcal{M}$ is R-diagonal if and only if
(a) all odd alternating moments vanish
(b) $\forall n \forall \epsilon \in\{1, *\}^{n}$,

$$
\phi\left(\prod_{V \in \sigma(\epsilon)}\left(\left(\prod_{j \in V} a^{\epsilon(j)}\right)-\phi\left(\prod_{j \in V} a^{\epsilon(j)}\right)\right)\right)=0
$$

Operator-valued noncommutative probability spaces

B-valued noncommutative probability spaces

Let $\left(B, \tau_{B}\right)$ be a tracial von Neumann algebra. We work in a tracial, B-valued ${ }^{*}$-noncommutative probability space $(\mathcal{A}, \mathcal{E})$; this means \mathcal{A} is a von Neumann algebra containing B as a unital subalgebra and $\mathcal{E}: \mathcal{A} \rightarrow B$ is a normal, faithful conditional expectation such that $\tau=\tau_{B} \circ \mathcal{E}$ is a trace on \mathcal{A}.

B-valued *-moments

The B-valued $*$-moments of $a \in \mathcal{A}$ are the multilinear maps $B \times \cdots \times B \rightarrow B$ of the form

$$
\left(b_{1}, \ldots, b_{n-1}\right) \mapsto \mathcal{E}\left(a^{\epsilon(1)} b_{1} a^{\epsilon(2)} b_{2} \cdots a^{\epsilon(n-1)} b_{n-1} a^{\epsilon(n)}\right)
$$

for $n \in \mathbf{N}$ and $\epsilon=(\epsilon(1), \ldots, \epsilon(n)) \in\{1, *\}^{n}$.

Operator-valued R-diagonal elements [Śniady, Speicher '01]

B-valued free cumulants were defined by [Speicher '98].
B-valued R-diagonal elements were defined [Śniady, Speicher '01] in terms of B-valued cumulants.

Theorem [Śniady, Speicher '01]

An element $a \in \mathcal{A}$ is B-valued R-diagonal if and only if there exists an enlargement $(\widetilde{A}, \widetilde{\mathcal{E}})$ of (A, \mathcal{E}) and a unitary $u \in \widetilde{A}$ such that

- u commutes with B,
- $\left\{u, u^{*}\right\}$ is free from $\left\{a, a^{*}\right\}$ (over B),
- $\widetilde{\mathcal{E}}\left(u^{k}\right)=0$ for all $k \in \mathbb{Z} \backslash\{0\}$,
- a and $u a$ have the same B-valued $*$-moments.

Operator-valued R-diagonal elements (2)

Corollary

If a is a B-valued R -diagonal element with polar decomposition $a=v|a|$, then the partial isometry v is also B-valued R-diagonal.

Proof: The B-valued $*$-moments of v are determined by those of a. But with u as in the previous theorem, a and $u a$ have the same B-valued *-monents. The polar decomopsition of $u a$ is $u v$, so v and $u v$ have the same B-valued $*$-moments.

Corollary

If a is a B-valued R -diagonal and if d is $*$-free from a (over B), then $a d$ is B-valued R -diagonal.

Proof: Let u be a Haar unitary commuting with B and $*$-free from $\{a, d\}$. Then $u a$ has the same $*$-moments as a, and $u a$ is $*$-free from d, so uad has the same $*$-moments as $a d$.

Operator-valued R-diagonal elements (3)

Reformulation [Boedihardjo, D. '18]

An element $a \in A$ is R-diagonal if and only if
(a) all alternating moments of odd length vanish, for example those of the form

$$
\mathcal{E}\left(a b_{1} a^{*} b_{2} a b_{3} a^{*} b_{4} a\right)
$$

(b) $\forall n \forall \epsilon \in\{1, *\}^{n}, \forall b_{1}, \ldots, b_{n} \in B$,

$$
\mathcal{E}\left(\prod_{V \in \sigma(\epsilon)}\left(\left(\prod_{j \in V} a^{\epsilon(j)} b_{j}\right)-\mathcal{E}\left(\prod_{j \in V} a^{\epsilon(j)} b_{j}\right)\right)\right)=0
$$

where $\sigma(\epsilon)$ is the maximal alternating interval partition associated to ϵ.

In particular, all B-valued $*$-moments of an R-diagonal element a are determined by the alternating B-valued *-moments.

Operator-valued R-diagonal elements (4)

Thus, the $*$-moments of an R-diagonal element a are determined by the $*$-moments having the even, alternating $*$-moments, denoted

$$
\begin{aligned}
& \alpha_{n}\left(b_{1}, \ldots, b_{2 n-1}\right):=\mathcal{E}\left(a^{*} b_{1} a b_{2} a^{*} b_{3} a \cdots b_{2 n-2} a^{*} b_{2 n-1} a\right) \\
& \beta_{n}\left(b_{1}, \ldots, b_{2 n-1}\right):=\mathcal{E}\left(a b_{1} a^{*} b_{2} a b_{3} a^{*} \cdots a^{*} b_{2 n-2} a b_{2 n-1} a^{*}\right)
\end{aligned}
$$

B-valued circular elements ([Śniady '03] ?)

A B valued circular element is an R-diagonal element z whose B-valued cumulants vanish except for those of second order. In practice, these are the completely positive maps $B \rightarrow B$

$$
\alpha_{1}(b)=\mathcal{E}\left(z^{*} b z\right), \quad \beta_{1}(b)=\mathcal{E}\left(z b z^{*}\right)
$$

and then the higher even, alternating moments are determined recursively (via the moment-cumulant formula) for $n \geq 2$ by

$$
\begin{aligned}
\alpha_{n}\left(b_{1}, \ldots, b_{n-1}\right)= & \mathcal{E}\left(a^{*} b_{1} a b_{2} a^{*} b_{3} a \cdots b_{2 n-2} a^{*} b_{2 n-1} a\right) \\
= & \alpha_{1}\left(b_{1}\right) b_{2} \alpha_{n-1}\left(b_{3}, \ldots, b_{2 n-1}\right) \\
& +\sum_{k=2}^{n-1} \alpha_{1}\left(b_{1} \beta_{k-1}\left(b_{2}, \ldots, b_{2 k-2}\right) b_{2 k-1}\right) b_{2 k} \\
& +\alpha_{n-k}\left(b_{2 k+1}, \ldots, b_{2 n-1}\right) \\
& \left(b_{1} \beta_{n-1}\left(b_{2}, \ldots, b_{2 n-1}\right) b_{2 n-1}\right)
\end{aligned}
$$

and likewise, reversing the roles of β and α.

B-valued circular elements (2)

Given any two completely positive maps α_{1} and β_{1} from B to B, there exists a unique corresponding B-valued circular element z such that

$$
\alpha_{1}(b)=\mathcal{E}\left(z^{*} b z\right), \quad \beta_{1}(b)=\mathcal{E}\left(z b z^{*}\right)
$$

Proposition [Boedihardjo, D. '18]

The B-valued circular element z can be realized in a tracial B-valued W^{*}-noncommutative probability space if and only if for a faithful tracial state τ_{B} on B, we have

$$
\tau_{B}\left(\alpha_{1}\left(b_{1}\right) b_{2}\right)=\tau_{B}\left(b_{1} \beta_{1}\left(b_{2}\right)\right)
$$

for all $b_{1}, b_{2} \in B$.

Example [Boedihardjo, D. '18]

Take $B=\mathbb{C}^{2}$ endowed with the equal weight trace and consider the completely positive maps $B \rightarrow B$

$$
\begin{aligned}
& \alpha_{1}\left(\lambda_{1}, \lambda_{2}\right)=\left(\frac{\lambda_{1}}{2}, \frac{\lambda_{1}}{2}+\lambda_{2}\right) \\
& \beta_{1}\left(\lambda_{1}, \lambda_{2}\right)=\left(\frac{\lambda_{1}+\lambda_{2}}{2}, \lambda_{2}\right) .
\end{aligned}
$$

Let z be the corresponding (tracial) circular element. We compute the distribution of $z^{*} z$ with respect to $\tau_{B} \circ \mathcal{E}$ and see that it has zero kernel, so it has polar decomposition $z=u|z|$, with u unitary.
We cannot have that u and $|z|$ are $*-$ free over B, because $\beta_{1}(1)=1$ while $\alpha_{1}(1) \neq 1$.

Conclusion

In the B-valued setting, circular elements and (more generally) R-diagonal elements need not have free polar decompositions.

Classes of B-valued Haar unitaries

We work in $(\mathcal{A}, \mathcal{E})$ as before.

Definition

Let $u \in \mathcal{A}$ be a unitary element. We say u is
(a) a Haar unitary element if $\mathcal{E}\left(u^{n}\right)=0$ for all $n \in \mathbb{Z} \backslash\{0\}$,
(b) a balanced unitary element if
$\mathcal{E}\left(u^{\epsilon(1)} b_{1} u^{\epsilon(2)} b_{2} \cdots u^{\epsilon(n-1)} b_{n-1} u^{\epsilon(n)}\right)=0$ whenever $\#\{j \mid \epsilon(j)=*\} \neq \#\{j \mid \epsilon(j)=1\}$ and $b_{1}, \ldots, b_{n-1} \in B$,
(c) an R-diagonal unitary element if u is also R-diagonal,
(d) a normalizing Haar unitary element if u is Haar unitary and if, for some automorphism θ of B and all b in $B, u^{*} b u=\theta(b)$.

Theorem

$$
(\mathrm{d}) \Longrightarrow(\mathrm{c}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{a}) \text {, and none of the reverse implications }
$$ hold.

Example: a Haar unitary that is not balanced

Let τ be the trace on $C(\mathbb{T})$ given by integration with respect to Haar measure on the unit circle \mathbb{T}. Let $v \in C(\mathbb{T})$ be the identity map on \mathbb{T} (thus, a Haar unitary with respect to τ). Let $\mathcal{A}=M_{2}(C(\mathbb{T})) \cong M_{2}(\mathbb{C}) \otimes C(\mathbb{T})$ and let $B \subseteq \mathcal{A}$ be the diagonal matrices having scalar entries, so $B \cong \mathbb{C}^{2}$. Let $\mathcal{E}: \mathcal{A} \rightarrow B$ be

$$
\mathcal{E}\left(\left(\begin{array}{cc}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)\right)=\left(\begin{array}{cc}
\tau\left(f_{11}\right) & 0 \\
0 & \tau\left(f_{22}\right)
\end{array}\right) .
$$

Let $p=\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ and let $u=p \otimes v+(1-p) \otimes v^{*}$. Then u is Haar unitary with respect to \mathcal{E}, but $\mathcal{E}\left(u e_{11} u\right)=\frac{1}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, so u is not a balanced unitary.

Example: a balanced unitary that is not R-diagonal

Let τ be the canonical trace on $C^{*}(\mathbb{Z} \times \mathbb{Z})$, with $v, w \in C^{*}(\mathbb{Z} \times \mathbb{Z})$ commuting Haar unitaries. Let
$\mathcal{A}=M_{2}\left(C^{*}(\mathbb{Z} \times \mathbb{Z})\right) \cong M_{2}(\mathbb{C}) \otimes C^{*}(\mathbb{Z} \times \mathbb{Z})$ and let $B \subseteq \mathcal{A}$ be the diagonal matrices having scalar entries, so $B \cong \mathbb{C}^{2}$. As before, let $\mathcal{E}: \mathcal{A} \rightarrow B$ be

$$
\mathcal{E}\left(\left(\begin{array}{cc}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)\right)=\left(\begin{array}{cc}
\tau\left(f_{11}\right) & 0 \\
0 & \tau\left(f_{22}\right)
\end{array}\right) .
$$

and $p=\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. Let $u=p \otimes v+(1-p) \otimes w$. Then it is straightforward to compute that u is a balanced unitary, but when $b_{1}=b_{2}=b_{3}=1 \oplus 0 \in B$ (identified with the matrix unit $e_{11} \in M_{2}(\mathbb{C})$), we find

$$
E\left(\left(u^{*} b_{1} u-E\left(u^{*} b_{1} u\right)\right) b_{2}\left(u b_{3} u^{*}-E\left(u b_{3} u^{*}\right)\right)\right)=\frac{1}{8}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \neq 0
$$

Thus, u is not an R-diagonal element.

Example: an R-diagonal unitary that is not normalizing

Let $B=\mathbb{C}^{2}$ and let z be the B-valued circular element corresponding to the maps

$$
\begin{aligned}
& \alpha_{1}\left(\lambda_{1}, \lambda_{2}\right)=\left(\frac{\lambda_{1}}{2}, \frac{\lambda_{1}}{2}+\lambda_{2}\right) \\
& \beta_{1}\left(\lambda_{1}, \lambda_{2}\right)=\left(\frac{\lambda_{1}+\lambda_{2}}{2}, \lambda_{2}\right)
\end{aligned}
$$

We know that z has polar decomposition $z=u|z|$, with u unitary. By the Corollary to [Śniady, Speicher '01], this u is an R-diagonal unitary element.

Example: an R-diagonal unitary that is not normalizing (2)

However, if u were normalizing with $u^{*} b u=\theta(b)$, then we would have, for every $x \in \mathcal{A}, \mathcal{E}(x)=0 \Longrightarrow \mathcal{E}\left(u x u^{*}\right)=0$, since

$$
\begin{gathered}
\tau_{B}\left(\mathcal{E}\left(u x u^{*}\right)^{*} \mathcal{E}\left(u x u^{*}\right)\right)=\tau_{B} \circ \mathcal{E}\left(u x^{*} u^{*} \mathcal{E}\left(u x u^{*}\right)\right)=\tau_{B} \circ \mathcal{E}\left(x^{*} u^{*} \mathcal{E}\left(u x u^{*}\right) u\right) \\
=\tau_{B} \circ \mathcal{E}\left(x^{*} \theta\left(\mathcal{E}\left(u x u^{*}\right)\right)\right)=\tau_{B}\left(\mathcal{E}\left(x^{*}\right) \theta\left(\mathcal{E}\left(u x u^{*}\right)\right)\right)=0 .
\end{gathered}
$$

This implies, for all $x \in \mathcal{A}, \mathcal{E}\left(u x u^{*}\right)=\theta^{-1}(\mathcal{E}(x))$.
Now we get

$$
\begin{aligned}
\mathcal{E}\left(z z^{*} b z z^{*}\right)=\mathcal{E}\left(u|z|^{2} u^{*} b u|z|^{2} u^{*}\right)=\theta^{-1}(& \left.\mathcal{E}\left(|z|^{2} \theta(b)|z|^{2}\right)\right) \\
& =\theta^{-1}\left(\mathcal{E}\left(z^{*} z \theta(b) z^{*} z\right)\right) .
\end{aligned}
$$

However, $\mathcal{E}\left(z z^{*} b z z^{*}\right)$ and $\mathcal{E}\left(z^{*} z \theta(b) z^{*} z\right)$ can be computed in terms of the defining completely positive maps α_{1} and β_{1}, and we easily see that the above equality fails to hold (for both possible automorphisms θ) when $b=(1,0) \in B$.

Motivating Question: what can B-valued R-diagonal unitaries look like if they are not normalizing?

One example: we understand the \mathbb{C}^{2}-valued circular element z of the previous example quite well and we know $z=u|z|$, where u is an R-diagonal unitary that is not normalizing (and also not free from $|z|)$.
We know the distribution of $|z|^{2}$ with respect to $\tau_{B} \circ \mathcal{E}$. Can we use this to find the \mathbb{C}^{2}-valued distribution of $|z|$ and thereby to describe the \mathbb{C}^{2}-valued distribution of u ?

Another idea: suppose there exists a B-valued circular element z, and suppose $z=u|z|$ with u and $|z| *$-free over B. Let us call this a free polar decomposition. Perhaps freeness would help us to find out more about the $*$-moments of u from those of z. Of course, if u is already normalizing (of B), then we are not so interested in this case.

Bipolar decompositions

Unfortunately, we don't understand well, in terms of cumulants, conditions for a polar decomposition of a B-valued R-diagonal to have a free and normalizing unitary part. (There is a theorem in [Boedihardjo, Dykema '18] that purports to do so, but it is erroneous. See [erratum '23].) Instead, we turn to bipolar decompositions.

Definition

Let $(\mathcal{A}, \mathcal{E})$ be a B-valued W^{*}-noncommutative probability space and let $a \in \mathcal{A}$. A bipolar decomposition of a is a pair (u, x) of elements in some B-valued W^{*}-noncommutative probability space ($\mathcal{A}^{\prime}, \mathcal{E}^{\prime}$), such that u is a partial isometry, x is self-adjoint and $u x$ has the same $*$-moments as a.

Bipolar decompositions are not unique. Examples include polar decompositions. "Bipolar" refers to the positive and negative directions of \mathbb{R}. If (u, x) is a bipolar decomposition, then $x=s|x|$ for a symmetry (namely, a self-adjoint unitary) s that commutes with x.
Thus, $(u s)|x|$ is a polar decomposition.

Bipolar decompositions (2)

Definition

A bipolar decomposition (u, x) in $\left(\mathcal{A}^{\prime}, \mathcal{E}^{\prime}\right)$ of an element a is

- minimal if $u^{*} u$ equals the support projection of x;
- unitary if u is a unitary element;
- tracial if there is a normal tracial state τ_{B} on B so that $\tau_{B} \circ \mathcal{E}^{\prime}$ is a trace on the $*$-algebra generated by u and x;
- standard if there is a symmetry $s \in \mathcal{A}^{\prime}$ such that $x=s|x|$ and such that s commutes with x, with u and with every $b \in B$;
- even if all odd moments of x vanish, namely, if $\mathcal{E}^{\prime}\left(x b_{1} x b_{2} \cdots x b_{2 n} x\right)=0$ for all $n \geq 1$ and $b_{1}, \ldots, b_{2 n} \in B$.
- free if u and x are $*$-free over B (with respect to the conditional expectation \mathcal{E}^{\prime});
- normalizing if it is unitary and u normalizes the algebra B, namely, if $u^{*} b u=\theta(b)$ for every $b \in B$, for some automorphism θ of B.

Bipolar decompositions (3)

Lemma

Every B-valued element, a, has a bipolar decomposition that is standard, even and minimal. If a is tracial, then this bipolar decomposition can also be taken to be tracial.

Proof: If $a=v|a|$ is the polar decomposition, then take $u=v \oplus(-v)$ and $x=|a| \oplus(-|a|)$.

Lemma on R-diagonal unitaries in bipolar decompositions

Suppose a B-valued R-diagonal element a has a bipolar decomposition ($v, x)$. Then a also has a bipolar decomposition $\left(v^{\prime}, x^{\prime}\right)$, where x^{\prime} has the same distribution as x and where v^{\prime} is B-valued R-diagonal. Furthermore, if (v, x) is tracial, unitary, minimal, standard, free or normalizing, then also $\left(v^{\prime}, x^{\prime}\right)$ can be taken to be tracial, unitary, minimal, standard, free, or normalizing, respectively.

Free, normalizing bipolar decompositions of R-diagonals

Recall our notation for the even alternating moments:

$$
\begin{aligned}
\alpha_{n}\left(b_{1}, \ldots, b_{2 n-1}\right) & :=\mathcal{E}\left(a^{*} b_{1} a b_{2} a^{*} b_{3} a \cdots b_{2 n-2} a^{*} b_{2 n-1} a\right) \\
\beta_{n}\left(b_{1}, \ldots, b_{2 n-1}\right) & :=\mathcal{E}\left(a b_{1} a^{*} b_{2} a b_{3} a^{*} \cdots a^{*} b_{2 n-2} a b_{2 n-1} a^{*}\right)
\end{aligned}
$$

Theorem [Boedihardjo, D. '18] (but using current terminology)

Let a be a B-valued R-diagonal element. Then a has a free, normalizing bipolar decomposition (u, x) with corresponding automorpihsm $u^{*} b u=\theta(b)$ if and only if

$$
\begin{aligned}
\alpha_{n}\left(b_{1}, \theta\left(b_{2}\right), b_{3}, \ldots,\right. & \left.\theta\left(b_{2 n-2}\right), b_{2 n-1}\right) \\
& =\theta\left(\beta_{n}\left(\theta\left(b_{1}\right), b_{2}, \theta\left(b_{3}\right), \ldots, b_{2 n-2}, \theta\left(b_{2 n-1}\right)\right)\right)
\end{aligned}
$$

for all n and $b_{1}, \ldots, b_{2 n-1} \in B$.
If a is actually B-valued circular, then the above condition beomes $\alpha_{1}(b)=\theta\left(\beta_{1}(\theta(b))\right)$ for all $b \in B$.

Example with a free normalizing bipolar decomposition but

 no normalizing polar decompositionLet z be a copy of Voiculescu's circular element (\mathbb{C}-valued) in a W^{*}-noncommutative probability space $\left(\mathcal{A}_{0}, \tau_{0}\right)$. Suppose $\left(B, \tau_{B}\right)$ is a tracial von Neumann algebra, $B \neq \mathbb{C}$. Let $(\mathcal{A}, \tau)=\left(\mathcal{A}_{0}, \tau_{0}\right) *\left(B, \tau_{B}\right)$ be the free product of von Neumann algebras and let $\mathcal{E}: \mathcal{A} \rightarrow B$ be the τ-preserving conditional expectation onto B. By [Śniady, Speicher '01], a is also B-valued circular in $(\mathcal{A}, \mathcal{E})$, with corresponding completely positive maps $\alpha_{1}(b)=\beta_{1}(b)=\tau_{B}(b) 1$. By the previous Theorem, for every τ_{B}-preserving automorphism θ of B, there is a free, normalizing bipolar decomposition (u, x) of a with $u^{*} b u=\theta(b)$ for all $b \in B$. However, the polar decomposition of a is $a=v|a|$ with $v \in \mathcal{A}_{0}$ that is Haar unitary with respect to τ_{0}. Thus, v is free from B and cannot normalize B.

More on that example

The previous example can be concretely realized in the free product (over \mathbb{C})

$$
(\mathcal{A}, \tau)=\left(B \rtimes_{\theta} \mathbb{Z}, \tau_{B} \circ E\right) *\left(L^{\infty}[-2,2], \tau_{2}\right)
$$

where $E: B \rtimes_{\theta} \mathbb{Z} \rightarrow B$ is the conditional expectation and τ_{2} is by integration against Lebesgue measure. Let $\mathcal{E}: \mathcal{A} \rightarrow B$ be the τ-preserving conditional expectation.
Now take a semicircular element $x \in L^{\infty}[-2,2]$ and a symmetry s so that $x=s|x|$. Let $u \in B \rtimes_{\theta} \mathbb{Z}$ be the Haar unitary implimenting θ. Then $z=u s|x|$ is a circular element with respect to τ, is $*$-free from $B, u s$ and $|x|$ are $*$-free from each other and (u, x) is a free, normalizing bipolar decomposition for z.

But under a nondegeneracy condition:

Theorem

Let a be a B-valued random variable in a B-valued
W*-noncommutative probability space $(\mathcal{A}, \mathcal{E})$ and assume that either of the subspaces

$$
\operatorname{span}\left\{\mathcal{E}\left(\left(a^{*} a\right)^{k}\right) \mid k \geq 0\right\} \text { or } \operatorname{span}\left\{\mathcal{E}\left(\left(a a^{*}\right)^{k}\right) \mid k \geq 0\right\}
$$

is weakly dense in B. Suppose that a has free bipolar decompositions (u, x) and ($\tilde{u}, \tilde{x})$ in B-valued W^{*}-noncommutative probability spaces $\left(A^{\prime}, E^{\prime}\right)$ and $(\widetilde{A}, \widetilde{E})$, respectively, with \widetilde{E} faithful. Suppose u and \tilde{u} are unitaries satisfying $E^{\prime}(u)=0=\widetilde{E}(\tilde{u})$ and suppose that u normalizes B. Then \tilde{u} normalizes B, and induces the same automorphism, namely, $\tilde{u}^{*} b \tilde{u}=u^{*} b u$ for all $b \in B$.

Motivating question and answer in a special case

Question

Suppose a tracial B-valued circular element a has a tracial, free, bipolar decomposition (u, x) with u unitary. Must a also have a free bipolar decomposition that is normalizing?

Note that under the nondegeneracy hypothesis, that

$$
\operatorname{span}\left\{\mathcal{E}\left(\left(a^{*} a\right)^{k}\right) \mid k \geq 0\right\} \text { or } \operatorname{span}\left\{\mathcal{E}\left(\left(a a^{*}\right)^{k}\right) \mid k \geq 0\right\}
$$

is weakly dense in B, we would conclude that every free bipolar decomposition of a is normalizing.

Theorem

Yes, when $B=\mathbb{C}^{2}$.

The theorem covering the case $B=\mathbb{C}^{2}$

In particular, we prove that if a is tracial \mathbb{C}^{2}-valued circular in $(\mathcal{A}, \mathcal{E})$ with corresponding completely positve maps α_{1} and β_{1} and if a has a free bipolar decomposition (u, x) with u unitary, then $\alpha_{1}=\theta \circ \beta_{1} \circ \theta$ for one of the two automorphisms θ of \mathbb{C}^{2}.
Method of proof: arduous calculation.
Just to give a taste of this: the defining maps α_{1} and β_{1}, as well as the trace τ_{B}, are defined in terms of certain parameters. Taking $a=u x$, we use the freeness assumption to obtain certain relations, e.g.,

$$
\mathcal{E}\left(\left(a a^{*}\right)^{n}\right)=\mathcal{E}\left(u \mathcal{E}\left(x^{2 n}\right) u^{*}\right)=\mathcal{E}\left(u \mathcal{E}\left(\left(a^{*} a\right)^{n}\right) u^{*}\right)
$$

and more complicated ones, e.g., involving $\mathcal{E}\left(\left(a a^{*}\right)^{n}\left(a^{*} a\right)^{m}\left(a a^{*}\right)^{k}\right)$. We can dispense with a degnerate case and assume without loss of generality $\operatorname{span}\left\{1_{B}, \mathcal{E}\left(a^{*} a\right)\right\}=B$. Using all of this and more, we obtain some nasty-looking algebraic relations among the aforementioned parameters. With help of Mathematica, we are able to show that we must have $\alpha_{1}=\theta \circ \beta_{1} \circ \theta$ for one of the θ.

Open questions:

Assume that

$$
\operatorname{span}\left\{\mathcal{E}\left(\left(a^{*} a\right)^{k}\right) \mid k \geq 0\right\} \text { or } \operatorname{span}\left\{\mathcal{E}\left(\left(a a^{*}\right)^{k}\right) \mid k \geq 0\right\}
$$

is weakly dense in B,

Question

Suppose a tracial B-valued circular element a has a tracial, free, bipolar decomposition (u, x) with u unitary. Must u normalize B ?

Question

Suppose a tracial B-valued R-diagonal element a has a tracial, free, bipolar decomposition (u, x). Must its polar decomposition be free?

Thanks for your attention! Selected References (chronological):

[1] D. Voiculescu, Circular and semicircular systems and free product factors, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), Progr. Math., vol. 92, Birkhäuser Boston, 1990, pp. 45-60.
[2] R. Speicher, Multiplicative functions on the lattice of noncrossing partitions and free convolution, Math. Ann. 298 (1994), 611-628.
[3] A. Nica and R. Speicher, R-diagonal pairs-a common approach to Haar unitaries and circular elements, Free Probability Theory (Waterloo, Ontario, 1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., 1997, pp. 149-188.
[4] R. Speicher, Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory, Mem. Amer. Math. Soc., vol. 627, 1998.
[5] A. Nica, D. Shlyakhtenko, and R. Speicher, R-diagonal elements and freeness with amalgamation, Canad. J. Math. 53 (2001), 355-381.
[6] P. Śniady and R. Speicher, Continuous family of invariant subspaces for R-diagonal operators, Invent. Math. 146 (2001), 329-363.
[7] P. Śniady, Multinomial identities arising from free probability theory, J. Combin. Theory Ser. A 101 (2003), 1-19.
[8] M. Boedihardjo and K. Dykema, On algebra-valued R-diagonal elements., Houston J. Math. 44 (2018), 209-252;: Erratum 49 (2023), 157-158.
[9] K. Dykema and J. A. Griffin, On operator valued Haar unitaries and bipolar decompositions of R-diagonal elements, Integral Equations Operator Theory, to appear, available at arXiv:2306.17333(w/Mathematica).

