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Part I: Inductive limits and AF algebras



Inductive limits of C∗-algebras

An inductive system of C∗-algebras consists of a sequence (An)n of
C∗-algebras together with connecting ∗-homomorphisms

A0 A1 A2 . . .
ρ1,0

ρ2,0

ρ2,1

For each k ≥ 0 and a ∈ Ak , we get a norm-bounded sequence

(ρn,k(a))n ∈
∏

n An.

The quotient map
∏

n An →
∏

An/
⊕

An induces ∗-homomorphisms
ρk : Ak →

∏
An/

⊕
An for each k ≥ 0 by

ρk(a) =
[
(ρn,k(a))n

]
, ∀ a ∈ Ak .

The inductive limit of the system (An, ρm,n) is the C∗-algebra

lim−→(An, ρm,n) :=
⋃

k ρk(Ak) ⊂
∏

An/
⊕

An.
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Inductive limits of C∗-algebras

This inductive limit construction has provided many interesting examples
of C∗-algebras, in particular, the AF algebras.

Definition
A C∗-algebra is Approximately Finite Dimensional (AF) if it is
∗-isomorphic to the inductive limit of finite-dimensional C∗-algebras.

Example

The CAR algebra:

M2 M4 ...
⋃

k M2k =: M2∞
a 7→a⊕a

Alternatively, an AF C∗-algebra is one that contains an ascending
sequence of finite-dimensional subalgebras with norm-dense union, which
makes its von Neumann analogue a little more apparent.
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AFD von Neumann Algebras

Definition
A von Neumann algebra is called Approximately Finite Dimensional
(AFD) (or hyperfinite) if it contains an ascending sequence of
finite-dimensional von Neumann subalgebras with weak∗-dense union.

Example

The hyperfinite II1-factor R.

M2 M4 ...
⋃

k M2k
wk∗

= Ra 7→a⊕a
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Semi-discrete von Neumann Algebras

Definition
A separably acting von Neumann algebra M is semi-discrete iff there
exists a sequence of finite-dimensional von Neumann algebras (Fn)n∈N

and unital completely positive (ucp) maps M ψn−→ Fn
φn−→ M such that

φn ◦ ψn → idM pointwise wk∗.

This gives a sequence of (wk∗-)approximately commuting diagrams.

M M M . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ψ1◦φ0

φ0 φ1

ψ2◦φ1

φ2

Example

Any AFD von Neumann algebra is semi-discrete.
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Nuclear C∗-algebras

Theorem/Definition (Choi–Effros ’78; Kirchberg ’77)

A separable C∗-algebra A is nuclear iff there exists a sequence of
finite-dimensional C∗-algebras (Fn)n∈N and completely positive

contractive (cpc) maps A
ψn−→ Fn

φn−→ A such that φn ◦ ψn → idA
pointwise in norm.

This yields a sequence of approximately commuting diagrams.

A A A . . .

F0 F1 F2 . . .

id

ψ0

id

ψ1

id

ψ2

ψ1◦φ0

φ0 φ1

ψ2◦φ1

φ2

We call (A
ψn−→ Fn

φn−→ A)n a system of cpc approximations of A.

Example

Any AF C∗-algebra is nuclear.
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Connes’ Theorem

Theorem (Connes)

Any separably acting semi-discrete von Neumann algebra is AFD.

Unlike in the von Neumann algebra setting, there are many nuclear
C∗-algebras that are not AF.

Example

• C (X ) where dim(X ) ≥ 1.

• Many C∗-algebras arising from amenable group (actions).

• Irrational Rotation algebras Aθ

• Cuntz algebras On

• Toeplitz algebra T

Even though a direct analogue to Connes’ result, i.e., “nuclear ⇒ AF”, is
out of the question, any system of cpc approximations of a nuclear
C∗-algebra gives rise to something very much like an inductive system.
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From CPAP to an “inductive system”

Theorem/Definition (Choi–Effros ’78; Kirchberg ’77)

A separable C∗-algebra A is nuclear iff there exists a sequence of
finite-dimensional C∗-algebras (Fn)n∈N and completely positive

contractive (cpc) maps A
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This yields a sequence of approximately commuting diagrams.
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ψ1
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φ2

This gives rise to an ”inductive system” of finite-dimensional C∗-algebras
with cpc connecting maps. What is the limit? And why is it A?
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Forming the limit



Forming the limit with ∗-homomorphisms

Suppose A =
⋃

Fn with φn : Fn ↪→ A the inclusion and ψn : A → Fn a
conditional expectation. Then the ρn+1,n are ∗-homomorphisms,

A A A . . . A

F0 F1 F2 . . .

⋃
ρn(Fn)

∏
Fj⊕
Fj

id

ψ0

id

ψ1 ψ2

Ψ
Ψ

∗-isom
ρ1,0

∗-hom

φ0

ρ0

∗-hom

ρ2,1

φ1

∗-hom

ρ1

φ2

ρ2

⊆

and (Fn, ρn+1,n)n is an inductive system with limit

lim−→(Fn, ρn+1,n) :=
⋃
ρn(Fn) ⊂

∏
Fj⊕
Fj
.
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Back to A

The (ψn)n induce a cpc map Ψ : A →
∏

Fj/
⊕

Fj .

A A A . . . A

F0 F1 F2 . . .

⋃
ρn(Fn)

∏
Fj⊕
Fj

id

ψ0

id

ψ1 ψ2

Ψ
∗-isom

ρ1,0

φ0

ρ0

ρ2,1

φ1

ρ1

φ2

ρ2

⊆

Ψ is isometric since (ψn)n are approx isometric

Ψ(A) =
⋃
ρn(Fn) since ρm,n = ψm ◦ φn, ∀ m > n

Ψ is a ∗-homomorphism since (ψn)n are approx mult

⇝ Ψ : A →
⋃
ρn(Fn) is a ∗-isomorphism.

∥ψn(a)∥ −−−→
n→∞

∥a∥, ∀ a ∈ A
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Forming the limit with cpc maps

When the ρn+1,n are cpc maps, they still induce cpc maps
ρn : Fn →

∏
Fj/

⊕
Fj with ρn(x) = [(ρm,n(x))m>n].

A A A . . . A

F0 F1 F2 . . .

⋃
ρn(Fn)

∏
Fj⊕
Fj

id

ψ0

id

ψ1 ψ2

Ψ
Ψ

∗-isom
ρ1,0

cpc

φ0

ρ0
cpc

ρ2,1

φ1

cpc

ρ1

φ2

ρ2

⊆

The limit of the system (Fn, ρn+1,n)n is still⋃
ρn(Fn) ⊂

∏
Fj⊕
Fj
,

which is now just a closed self-adjoint subspace.
How does it relate to A?
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Since any coi between C∗-algebras is automatically a ∗-isomorphism, the
coi class of a C∗-algebra captures its ∗-isomorphism class.

Moreover, by equipping
⋃
ρn(Fn) with the product

Ψ(a) rΨ(b) := Ψ(ab), ∀ a, b ∈ A,

we get a C∗-algebra (
⋃
ρn(Fn), r), which is ∗-isomorphic to A.
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Part II: cpc systems and nuclearity



cpc systems

Somehow the system (Fn, ψn+1 ◦ φn)n produced, not a C∗-algebra, but a
space completely order isomorphic to a nuclear C∗-algebra.

Definition
We call a sequence of C∗-algebras (An)n together with cpc connecting
maps ρn+1,n : An → An+1 a cpc system, denoted (An, ρn+1,n)n. When
the An are all finite-dimensional, we call the system finite-dimensional.

In one sense this is a special case of Blackadar and Kirchberg’s Generalized
Inductive Systems. In another sense, it is a generalization.

Question
Given a finite-dimensional cpc system (Fn, ρn+1,n)n, when is the limit⋃
ρn(Fn) coi to a (nuclear) C∗-algebra?
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Nuclearity

Proposition (C.–Winter, C.)

If the limit of a finite-dimensional cpc system is coi to a C∗-algebra A,
then A is nuclear.

This follows readily from Ozawa and Sato’s One-Way-CPAP, which
allows one to determine whether a given C∗-algebra A is nuclear by
finding a certain family of cpc maps {φλ : Fλ → A}λ from
finite-dimensional C∗-algebras.
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One Way CPAP

Theorem (Ozawa ’02, Sato ’21)

A C∗-algebra A is nuclear iff there exists a net (φλ : Fλ → A)λ∈Λ of cpc
maps from finite-dimensional C∗-algebras such that the induced cpc map∏

λ Fλ ℓ∞(Λ,A)

∏
λ Fλ/

⊕
λ Fλ

ℓ∞(Λ,A)/c0(Λ,A)

(φλ)λ

Φ

satisfies A1 ⊂ Φ

((∏
λ Fλ⊕
λ Fλ

)1)
.

To get the φn in our case:

F0 F1 F2 . . .

⋃
ρn(Fn)

∏
Fj⊕
Fj

A

ρ1,0

φ0

ρ0

ρ2,1

ρ1

ρ2

⊆

Ψ coi
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NF systems (Blackadar and Kirchberg)

Definition (Blackadar–Kirchberg ’97)

A finite-dimensional cpc system (Fn, ρn+1,n)n is NF if it is asymptotically
multiplicative,

meaning that for any k ≥ 0, x , y ∈ Fk , and ε > 0, there
exists an M > k so that for all m > n > M

∥ρm,n
(
ρn,k(x)ρn,k(y)

)
− ρm,k(x)ρm,k(y)∥ < ε.

Think of this as saying that for m > n > M, the maps ρm,n become more
multiplicative on ρn,k(x) and ρn,k(y).
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ρn,k(x)ρn,k(y)
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(
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)
ρm,n

(
ρn,k(y)

)
∥ < ε.

The limit
⋃
ρn(Fn) ⊂

∏
Fj⊕
Fj

is a C∗-subalgebra with

ρk(x)ρk(y) = lim
n
ρn(ρn,k(x)ρn,k(y)), ∀ k ≥ 0, x , y ∈ Fk .
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∥ρm,n
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)
− ρm,k(x)ρm,k(y)∥ < ε.

Think of this as saying that for m > n > M, the maps ρm,n become more
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The following are equivalent for a separable C∗-algebra A:

1. A is nuclear and quasidiagonal (QD).

2. A is ∗-isomorphic to the limit of an NF system.

Moreover, for any nuclear and QD C∗-algebra A, there exists a system

(A
ψn−→ Fn

φn−→ A)n with (ψn)n approximately multiplicative so that the
induced cpc system (Fn, ψn+1 ◦ φn)n is NF and its limit is ∗-isom to A.
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Remark
For any summable system of cpc approximations (A

ψn−→ Fn
φn−→ A)n,

(ψn)n are approximately multiplicative iff (Fn, ψn+1 ◦ φn)n is NF.
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Nuclear non-QD C∗-algebras

This result covers many interesting examples of separable nuclear
C∗-algebras,

but many others are not QD, e.g. any nuclear C∗-algebra
with a proper isometry, and yet their systems of cpc approximations give
rise to a C∗-algebra.

To drop quasidiagonality, we must relax the asympototic multiplicativity
assumption.

And the expectation that the limit is a C∗-subalgebra of
∏

Fj/
⊕

Fj

One natural step down comes from order cp zero maps.

Proposition (Winter–Zacharias ’09)

Let A and B be C∗-algebras with A unital. A cp map φ : A → B is order
zero iff φ(a)φ(b) = φ(1A)φ(ab) for all a, b ∈ A.

Note that a unital cp order zero map is automatically a ∗-homomorphism.
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NF systems (Blackadar and Kirchberg)

Definition (Blackadar–Kirchberg ’97)

A finite-dimensional cpc system (Fn, ρn+1,n)n is NF if it is
asymptotically multiplicative, meaning that
for any k ≥ 0, x , y ∈ Fk , and ε > 0, there exists an M > k
so that for all m > n > M

∥ρm,n
(
ρn,k(x)ρn,k(y)

)
− ρm,k(x)ρm,k(y)∥ < ε.

The limit
⋃
ρn(Fn) ⊂

∏
Fj⊕
Fj

of an NF system is

a C∗-subalgebra with

ρk(x)ρk(y) = lim
n
ρn(ρn,k(x)ρn,k(y)), ∀ k ≥ 0, x , y ∈ Fk .



CPC∗-systems (C.–Winter ’23)

Definition (C.–Winter ’23)

A finite-dimensional cpc system (Fn, ρn+1,n)n is CPC∗ if it is
asymptotically order zero, meaning that
for any k ≥ 0, x , y ∈ Fk , and ε > 0, there exists an M > k
so that for all m > n, j > M

∥ρm,j(1Fj
)ρm,n

(
ρn,k(x)ρn,k(y)

)
− ρm,k(x)ρm,k(y)∥ < ε.

The limit
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Fj⊕
Fj
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Definition (C.–Winter ’23)

A finite-dimensional cpc system (Fn, ρn+1,n)n is CPC∗ if it is
asymptotically order zero, meaning that
for any k ≥ 0, x , y ∈ Fk , and ε > 0, there exists an M > k
so that for all m > n, j > M

∥ρm,j(1Fj
)ρm,n

(
ρn,k(x)ρn,k(y)

)
− ρm,k(x)ρm,k(y)∥ < ε.

The limit
⋃
ρn(Fn) ⊂

∏
Fj⊕
Fj

of a CPC∗ system is

completely order isomorphic to the C∗-algebra (
⋃
ρn(Fn), r) with

ρk(x) rρk(y) = lim
n
ρn(ρn,k(x)ρn,k(y)), ∀ k ≥ 0, x , y ∈ Fk .



Side-by-side

Definition (Blackadar–Kirchberg ’97)

A finite-dimensional cpc system (Fn, ρn+1,n)n is NF if
∀ k ≥ 0, x , y ∈ Fk , and ε > 0, ∃ M > k so that ∀ m > n, j > M

∥ρm,n
(
ρn,k(x)ρn,k(y)

)
− ρm,k(x)ρm,k(y)∥ < ε.

Definition (C.–Winter ’23)

A finite-dimensional cpc system (Fn, ρn+1,n)n is CPC∗ if
∀ k ≥ 0, x , y ∈ Fk , and ε > 0, ∃ M > k so that ∀ m > n, j > M

∥ρm,j(1Fj
)ρm,n

(
ρn,k(x)ρn,k(y)

)
− ρm,k(x)ρm,k(y)∥ < ε.

The limit
⋃
ρn(Fn) ⊂

∏
Fj⊕
Fj

is a C∗-algebra when equipped with the

product

ρk(x) rρk(y) = lim
n
ρn(ρn,k(x)ρn,k(y)), ∀ k ≥ 0, x , y ∈ Fk .



NF and CPC∗-systems

Theorem (Blackadar–Kirchberg ’97)

The following are equivalent for a separable C∗-algebra A:

1. A is nuclear and QD.

2. A is ∗-isomorphic to the limit of an NF system.

Moreover, for any nuclear and QD C∗-algebra A, there exists a system

(A
ψn−→ Fn

φn−→ A)n with (ψn)n approximately multiplicative so that the
induced cpc system (Fn, ψn+1 ◦ φn)n is NF and its limit is ∗-isom to A.

Theorem (C.–Winter ’23 (via Blackadar-Kirchberg + Voiculescu)

The following are equivalent for a separable C∗-algebra A:

1. A nuclear.

2. A is coi to the limit of a CPC∗-system.

Moreover, for any nuclear C∗-algebra A, there exists a system

(A
ψn−→ Fn

φn−→ A)n with (ψn)n approximately order zero so that the
induced cpc system (Fn, ψn+1 ◦ φn)n is CPC∗ and its limit is coi to A.
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Hierarchy

Example (C.–Winter)

Any NF system has a CPC∗-subsystem.

NF ⊊ CPC∗

Example

Any separable nuclear non-QD C∗-algebra admits a system

(A
ψn−→ Fn

φn−→ A)n so that the induced cpc system (Fn, ψn+1 ◦ φn)n is
CPC∗ and not NF.

Remark
If the connecting maps ρn+1,n : Fn → Fn+1 are unital, then a CPC∗

system is automatically NF.
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Part III: C∗-encoding systems



Back to our motivating observations

(Asymptotically/Approximately) multiplicative/ order zero maps carry
significantly more structure than generic cpc maps.

But these can be
hard to get our hands on.

Though systems (A
ψn−→ Fn

φn−→ A)n of cpc approximations with (ψn)n
approximately multiplicative/ order zero are known to exist, they can be
hard to find, and many well-known systems of cpc approximations do not
produce NF or CPC∗-systems.

However, we saw that any system (A
ψn−→ Fn

φn−→ A)n of cpc
approximations produces (after possibly passing to a summable
subsystem) a cpc system (Fn, ψn+1 ◦ φn)n whose limit is completely order
isomorphic to a nuclear C∗-algebra.

Question
Given a finite-dimensional cpc system (Fn, ρn+1,n)n, when is the limit⋃
ρn(Fn) coi to a (nuclear) C∗-algebra?
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Systems from Følner sequences
For a countable, discrete, amenable group Γ, we can use any Følner
sequence (Gn)n to construct a system of ucp approximations of C∗

λ(Γ):

C∗
λ(Γ) C∗

λ(Γ) C∗
λ(Γ) . . .

MG0 MG1 MG2 . . .

id

ψ0

id

ψ1

id

ψ2φ0

ψ1◦φ0

φ1

ψ2◦φ1

φ2

Identifying MGn
∼= PnB(ℓ

2(Γ))Pn with Pn = projspan{δg |g∈Gn}, we set

ψn(x) = PnxPn for x ∈ C∗
λ(Γ) ⊂ B(ℓ2(Γ))

and
φn(eg ,h) =

1
|Fn|λgh−1

where {eg ,h | g , h ∈ Gn} ⊂ MGn are the matrix units.

Proposition (C.)

If Γ has a non-torsion element (e.g. Γ = Z), then the maps (ψn)n will be
neither approximately multiplicative nor approximately order zero
The resulting cpc system will neither be NF nor CPC∗.
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λ(Z)

For Γ = Z and Følner sets Gn = {0, ..., n − 1}, we have MGn = Mn with
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For the bilateral shift λ1,

ψn(λ
∗
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∗ψn(λ1)∥ = ∥en,n∥ = 1.



Systems from Følner sequences
For a countable, discrete, amenable group Γ, we can use any Følner
sequence (Gn)n to construct a system of ucp approximations of C∗

λ(Γ):
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ψn(x) = PnxPn for x ∈ C∗
λ(Γ) ⊂ B(ℓ2(Γ))

and
φn(eg ,h) =
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Back to our motivating observations

(Asymptotically/Approximately) multiplicative/ order zero maps carry
significantly more structure than generic cpc maps. But these can be
hard to get our hands on.

Though systems (A
ψn−→ Fn

φn−→ A)n of cpc approximations with (ψn)n
approximately multiplicative/ order zero are known to exist, they can be
hard to find, and many well-known systems of cpc approximations do not
produce NF or CPC∗-systems.

However, we saw that any system (A
ψn−→ Fn

φn−→ A)n of cpc
approximations produces (after possibly passing to a summable
subsystem) a cpc system (Fn, ψn+1 ◦ φn)n whose limit is completely order
isomorphic to a nuclear C∗-algebra.

Question
Given a finite-dimensional cpc system (Fn, ρn+1,n)n, when is the limit⋃
ρn(Fn) coi to a (nuclear) C∗-algebra?
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C∗-encoding systems (C.)

Definition (C.’23)

A finite-dimensional cpc system (Fn, ρn+1,n)n is C∗-encoding if for any
k ≥ 0, x , y ∈ Fk , and ε > 0, there exists an M > k so that for all
m > n, j > M

∥ρm,n
(
ρn,k(x)ρn,k(y)

)
− ρm,j

(
ρj ,k(x)ρj ,k(y)

)
∥ < ε.

The limit
⋃
ρn(Fn) ⊂

∏
Fj⊕
Fj

is completely order isomorphic to the

C∗-algebra (
⋃
ρn(Fn), r) with

ρk(x) rρk(y) = lim
n
ρn(ρn,k(x)ρn,k(y)), ∀ k ≥ 0, x , y ∈ Fk .
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All together

Definition (Blackadar–Kirchberg ’97)

A finite-dimensional cpc system (Fn, ρn+1,n)n is NF if
∀ k ≥ 0, x , y ∈ Fk , and ε > 0, ∃ M > k so that ∀ m > n, j > M
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Definition (C.–Winter ’23)
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Hierarchy

Example (C.)

Any NF system is C∗-encoding, and any CPC∗-system has a
C∗-encoding subsystem.

NF ⊊ CPC∗ ⊊ C∗-encoding

Example

From our Følner approximation of C∗
λ(Z), the compositions ρm,n are

given on matrix units by (with Sn ∈ Mn is the shift)

ρm,n(ei ,j) =
1

n

(
m−1∏
k=1

1− |i − j |
n + k

)
S i−j
m .

Under summability assumptions, this system is C∗-encoding.

Remark
A unital CPC∗ system is automatically NF. This is not so for
C∗-encoding systems.



Hierarchy

Example (C.)

Any NF system is C∗-encoding, and any CPC∗-system has a
C∗-encoding subsystem.

NF ⊊ CPC∗ ⊊ C∗-encoding

Example

From our Følner approximation of C∗
λ(Z), the compositions ρm,n are

given on matrix units by (with Sn ∈ Mn is the shift)

ρm,n(ei ,j) =
1

n

(
m−1∏
k=1

1− |i − j |
n + k

)
S i−j
m .

Under summability assumptions, this system is C∗-encoding.

Remark
A unital CPC∗ system is automatically NF. This is not so for
C∗-encoding systems.



Hierarchy

Example (C.)

Any NF system is C∗-encoding, and any CPC∗-system has a
C∗-encoding subsystem.

NF ⊊ CPC∗ ⊊ C∗-encoding

Example

From our Følner approximation of C∗
λ(Z), the compositions ρm,n are

given on matrix units by (with Sn ∈ Mn is the shift)

ρm,n(ei ,j) =
1

n

(
m−1∏
k=1

1− |i − j |
n + k

)
S i−j
m .

Under summability assumptions, this system is C∗-encoding.

Remark
A unital CPC∗ system is automatically NF. This is not so for
C∗-encoding systems.



Hierarchy

Example (C.)

Any NF system is C∗-encoding, and any CPC∗-system has a
C∗-encoding subsystem.

NF ⊊ CPC∗ ⊊ C∗-encoding

Example

From our Følner approximation of C∗
λ(Z), the compositions ρm,n are

given on matrix units by (with Sn ∈ Mn is the shift)

ρm,n(ei ,j) =
1

n

(
m−1∏
k=1

1− |i − j |
n + k

)
S i−j
m .

Under summability assumptions, this system is C∗-encoding.

Remark
A unital CPC∗ system is automatically NF. This is not so for
C∗-encoding systems.



C∗-encoding systems

Theorem (C. ’23)

The following are equivalent for a separable C∗-algebra A:

1. A is nuclear.

2. A is coi to the limit of a C∗-encoding system.

Moreover, for any nuclear C∗-algebra A and any system

(A
ψn−→ Fn

φn−→ A)n of cpc approximations of A the induced cpc system
(Fn, ψn+1 ◦ φn)n is C∗-encoding and its limit is coi to A.

Theorem (C.–Winter ’23 (via Blackadar-Kirchberg + Voiculescu))

The following are equivalent for a separable C∗-algebra A:

1. A nuclear.

2. A is coi to the limit of a CPC∗-system.
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C∗-encoding systems

Question
Given a finite-dimensional cpc system (Fn, ρn+1,n)n, when is the limit⋃
ρn(Fn) coi to a (nuclear) C∗-algebra?

Theorem (C. ’23)

For a finite-dimensional cpc system (Fn, ρn+1,n)n, the following are
equivalent

1. The limit is coi to a C∗-algebra.

2. The limit is coi to a nuclear C∗-algebra. (CW, OS)

3. The system has a C∗-encoding subsystem.

That means C∗-encoding is necessary and sufficient to have a limit coi to
a (nuclear) C∗-algebra, and that the multiplication

ρk(x) rρk(y) = lim
n
ρn(ρn,k(x)ρn,k(y)), k ≥ 0, x , y ∈ Fk ,

is essentially the only possible C∗-product on the limit.
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Part IV: Nuclear Operator Systems



Non-C∗-encoding systems?

Question
Is there a finite-dimensional cpc system with no C∗-encoding subsystem,
i.e., whose limit is not coi to a C∗-algebra?



C∗-encoding systems (C.)

Definition (C.’23)

A finite-dimensional cpc system (Fn, ρn+1,n)n is C∗-encoding if for any
k ≥ 0, x , y ∈ Fk , and ε > 0, there exists an M > k so that for all
m > n, j > M
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(
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)
− ρm,j
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)
∥ < ε.



A simple example

Example (C.–Galke–van Luijk–Stottmeister)

The finite-dimensional cpc system (Mn, ρn+1,n)n with

ρn+1,n(y) = y ⊕ y11

has no C∗-encoding subsystem, and its limit is not coi to a C∗-algebra.

Note that for E12,E21 ∈ M2 and n > 2, ρn,2(E12) = E12 ∈ Mn and
ρn,2(E21) = E12 ∈ Mn. So for any m > n > 2,

ρm,n(ρn,2(E12)ρn,2(E21)) = ρm,n(E11) = E11 ⊕ Im−n.

Then for all m > n > j > 2

∥ρm,n(ρn,2(E12)ρn,2(E21))− ρm,j(ρj ,2(E12)ρj ,2(E21))∥ = 1.
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Non-C∗-encoding systems

Question
Is there a finite-dimensional cpc system with no C∗-encoding subsystem,
i.e., whose limit is not coi to a C∗-algebra?

Yes. Moreover, since the maps in our example are ucp, the limit is an
operator system, which is not coi to a C∗-algebra. Moreover, it is a
nuclear operator system.
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Nuclear Operator Systems

Theorem (Han–Paulsen, ’11)

A separable operator system S is nuclear in the category of operator
systems (i.e., (max,min)-nuclear) iff there exist ucp maps

S ψn−→ Mkn
φn−→ S such that φn ◦ ψn → idS pointwise in norm.

Proposition (C.–Galke–van Luijk–Stottmeister)

Let S be a separable nuclear operator system and (S ψn−→ Mkn
φn−→ S)n a

system of completely positive approximations. After possibly passing to a
summable subsystem, (Mkn , ψn+1 ◦ φn)n is a cpc system whose limit is
coi to S via the map a 7→ [(ψn(a))n].

Hence any separable nuclear operator system is coi to the limit of a
finite-dimensional cpc system.
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summable subsystem, (Mkn , ψn+1 ◦ φn)n is a cpc system whose limit is
coi to S via the map a 7→ [(ψn(a))n].

Hence any separable nuclear operator system is coi to the limit of a
finite-dimensional cpc system.
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Nuclear Operator Systems not coi to C∗-algebras

There are relatively few examples of nuclear operator systems which are
not coi to C∗-algebras.

Example (Kirchberg–Wassermann, ’98)

A separable nuclear operator system that does not embed completely
order isometrically into a nuclear C∗-algebra.

Theorem (C.–Galke–van Luijk–Stottmeister)

Let S be a separable operator system. Then the following are equivalent.

1. S is nuclear and completely order isomorphic to a C∗-algebra.

2. S is completely order isomorphic to the limit of a finite-dimensional
C∗-encoding system.
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A simple example revisited

Consider the finite-dimensional cpc system (Mn, ρn+1,n)n with

ρn+1,n(y) = y ⊕ y11.

Proposition (C.–Galke–van Luijk–Stottmeister + Han–Paulsen)

The limit is coi to the nuclear operator system

S = span{I ,Ei ,j | (i , j) ̸= (1, 1)} ⊂ B(ℓ2(N)).

With this and the previous theorem, we recover Han and Paulsen’s result.

Theorem (Han–Paulsen, ’11)

S is not coi to a C∗-algebra.



Thank you.



Summability
A system of c.p.c. approximations (A

ψn−→ Fn
φn−→ A)n of a separable C∗-algebra

A is summable if there exists a decreasing sequence (εn) ∈ ℓ1(N)1+ so that
∥φn − φm ◦ ψm ◦ φn∥ < ϵn for all m > n ≥ 0.

We will call a Følner sequence (Gn)n for a discrete group G summable if there
exists a decreasing sequence (εn) ∈ ℓ1(N)1+ so that for all m > n ≥ 0

max
g ,h∈Gn

(
1− |Gm ∩ gh−1Gm|

|Gm|

)
|Gn| < εm.

One sub-Følner sequence of ({0, ..., n})n for Z making the system of cpc
approximations from before summable (for εn = 2n+1) is given by G0 = {0} and
Gn = {0, ..., 2n|Gn−1|} for n ≥ 1. Then we have

φn(ψn(λk)) = φn(S
k
|Gn|) =

|Gn| − |k|
|Gn|

λk

for n > k ≥ 0 where S|Gn| ∈ M|Gn| is the shift. A few iterations yields

ρm,n(ei,j) =
1

|Gn|

(
m−1∏
k=1

|Gn+k | − |i − j |
|Gn+k |

)
S i−j
|Gm|, for m > n ≥ 0, 0 ≤ i , j ≤ n.
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