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Goal: Develop efficient algorithm for computing free additive and multiplicative
convolutions of “nice” measures.

Outline:
Motivation
Algorithm for the additive case
Numerical examples
Algorithm in the multiplicative case
Conclusion
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Motivation #1: Eigenvalues of a sum of random matrices

An, Bn sequences of asymptotically free random matrices (or one deterministic and one random),
eig. distr. converging to µA, and µB , what about eig. distr. of An + Bn?

+ =

When n æ Œ, eig. distr. of the sum is (approximately) free additive convolution of µA and µB .

From a numerical linear algebra point of view: An = discretization of some operator, Bn models an
unknown error, we can only access An + Bn...
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Motivation #2: Distribution of covariance matrices

�p covariance matrices, for p æ Œ the eigenvalues of �p have a limit distribution µ.
Take n samples ≥ N(0, �p) and put them in matrix Z.

Consider sample covariance matrix ‚�p = 1
n ZT Z

(Also assume that p/n æ “)

What is the distribution of ‚�p (in the limit p æ Œ)?
Free multiplicative convolution of µ with a Marchenko-Pastur distribution
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Free additive convolution
Setting: Measure µ with compact support [a, b].

1 Cauchy transform: G(z) =
´ b

a
1

z≠tdµ(t)
Analytic on C\[a, b] fi {Œ}.

2 R-transform: defined by G
1
R(z) + 1

z

2
= z

Analytic on a disk around 0.
If GÕ(z) ”= 0 for all z œ C fi {Œ}\[a, b] then R is analytic on the whole G(C fi {Œ}\[a, b]).

Sum of freely independent random variables with measures µ1 and µ2
=

Free additive convolution of the corresponding measures µ := µ1 � µ2

Theorem
Given two measures µ1 and µ2,

Rµ1�µ2(z) = Rµ1(z) + Rµ2(z).
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Numerical computation of free convolution: Existing algorithms

N. R. Rao and A. Edelman (2008). The polynomial method for random matrices. Found.
Comput. Math.
Free additive convolution of measures whose Cauchy transform is an algebraic function.

Olver, S., & Nadakuditi, R. R. (2012). Numerical computation of convolutions in free probability
theory. arXiv preprint.
Methods for smoothly decaying / Jacobi measures. We use several results in their paper for our
(conceptually simpler) algorithm.

E. Dobriban. (2015). Efficient computation of limit spectra of sample covariance matrices.
Random Matrices Theory Appl.
Distribution of covariance matrices resulting from (approximate) free multiplicative convolution of point
measure with Marchenko-Pastur.
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Assumptions on the input measures

Definition
µ is a Jacobi measure if its density has the form

dµ(x) = (x ≠ a)–(b ≠ x)—Â(x)dx

for some –, — > ≠1 and Â œ C1([a, b]). It has sqrt-behavior at the boundary if – = — = 1
2 .

Examples:
Semicircle æ sqrt-behavior
Marchenko-Pastur æ sqrt-behavior
Uniform on an interval æ Jacobi

Assumption: We assume that µ1 and µ2 have compact support [a1, b1] and [a2, b2]; one of the
measures has sqrt-behavior at the boundary (and has an invertible Cauchy transform) and the
other one is a Jacobi measure.
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High-level idea of our algorithm:

Express transforms G(z) and R(z) using Cauchy integral
formula.

Whenever we need to numerically compute an integral, we
express it as integral of holomorphic function on the unit circle
and use trapezoidal quadrature rule (which converges
exponentially fast).
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The Joukowski transform

J[a,b](v) = 1
2

b ≠ a

2

3
v + 1

v

4
+ b + a

2

Conformal map from D to C fi {Œ}\[a, b]

G analytic ∆ Can define G̃ in the unit disk

G̃(v) := G(J[a,b](v)) =
ÿ

nØ1
gnvn.
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1st ingredient:
Evaluation of the Cauchy transform
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Evaluation of Cauchy transform

G(z) =
ˆ b

a

1
z ≠ x

dµ(x) =
ˆ

“

1
2

b ≠ a
2

1
1 ≠ 1

w2

2 f(J[a,b](w))
z ≠ J[a,b](w)dw, “ upper unit semicircle, dµ(x) = f(x)dx

Numerically, we discretize the second integral with the trapezoidal quadrature rule
in N equispaced points.

For measures with sqrt-behavior at the boundary,

G(z) = ≠1
2

ˆ
ˆD

(b ≠ a)2

4
1
w

3
w ≠ 1

w

42 Â(J[a,b](w))
z ≠ J[a,b](w)dw.
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Exponential convergence of trapezoidal quadrature rule

Theorem ([Trefethen/Weideman’2014 (but well known before)])

Suppose u is analytic and satisfies |u(z)| Æ C in an annulus fl≠1 < |z| < fl of the complex plane, for
some fl > 1. Let N > 1 and consider the approximation IN of the integral I :=

´
ˆD u(z)dz using N

equispaced quadrature points and the trapezoidal quadrature rule. Then

|IN ≠ I| Æ 4fiC

flN ≠ 1 .

Corollary: Trapezoidal quadrature rule con-
verges exponentially for measures with sqrt-
behavior at the boundary, and convergence
rate fl increases when we move further away
from the support of µ.
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First step of the algorithm

First step of our algorithm: Choose N equispaces points r›0
N , r›1

N , r›2
N , . . . , r›N≠1

N on a circle of
radius r < 1 (but close to 1) and evaluate

G̃µ1(r›0
N ), G̃µ1(r›0

N ), . . . , G̃µ1(r›0
N ),

G̃µ2(r›0
N ), G̃µ2(r›0

N ), . . . , G̃µ2(r›0
N ).
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2nd ingredient:
Evaluation of the R transform
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Numerical computation of R-transform

Recall: G
!
R(w) + 1

w

"
= w and R is analytic!

We can express R(w) for w inside the blue curve on the right using Cauchy integral formula:

R(w) = 1
2fii

ˆ
�

R(z)
w ≠ z

dz
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Convergence result
If � is parametrized using the blue circle on the left (radius r), we rewrite this as the integral of a

holomorphic function on ˆD ∆ trapezoidal quadrature rule converges exponentially!

R(w) = r

2fii

ˆ
ˆD

J[a,b](rv) ≠ 1/ ÂG(rv)
ÂG(rv) ≠ w

GÕ(J[a,b](rv))J Õ
[a,b](rv)dv =:

ˆ
ˆD

u(v)dv.

Theorem ([C/Ying’2023])

Let w be a point inside the blue curve �. Let fl < min{r≠1, dist(G̃≠1(z), rˆD)}. Let ›N = exp(2fii/N). Assume we have computed
approximations cj ¥ G(J(r›j

N )) = ÂG(r›j
N ) and dj ¥ GÕ(J(r›j

N )) such that |G̃(r›j
N ) ≠ cj | Æ Á and |GÕ(J(r›j

N )) ≠ dj | Æ Á. Let
m1 = min{ÎG̃Î�, c0, . . . , cN≠1}. Let m2 be the distance of z from �. Let us discretize the integral with the trapezoidal quadrature rule

R(w) ¥
r

N

Nÿ

j=1

›j
N · dj · JÕ(›j

N ) ·
J(›j

N ) ≠ 1/cj

cj ≠ w
=: RN (w).

Then

|RN (w) ≠ R(w)| Æ
4fi

flN ≠ 1
max

fl≠1Æ|v|Æfl
|u(v)|

+ ÁrÎJÕÎrˆD

1
ÎJÎrˆD

m2
+ 1

m1m2
+ (Á + ÎGÕÎJ(rˆD)) 1

m2
2

1
ÎJÎrˆD + |w|

m2
1

+ 2
m1

22
.

R(z) = r2

2fii

ˆ
ˆD

J[a,b](rv) ≠ 1/G̃(rv)
z ≠ G̃(rv)

GÕ(J[a,b](rv))J Õ
[a,b](rv)dv.
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3rd ingredient:
The support of µ := µ1 � µ2
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Computing the support of µ := µ1 � µ2

Consider measures µ1 and µ2 with support in [a1, b1] and [a2, b2].

Let g(z) := G≠1
µ1 (z) + G≠1

µ2 (z) ≠ 1
z

(= Gµ(z) around 0.)

Theorem ([Olver/Nadakuditi’2012])
Assume that µ1 has sqrt-behavior at the boundary and its Cauchy transform is invertible, and µ2
has the form dµ2(t) = (t ≠ a2)–(b2 ≠ t)—Â2(t)dt for some –, — > ≠1 and Â2 œ C1[a2, b2]. Then:

µ1 � µ2 has sqrt-behavior at the boundary;
The support of µ is contained in the interval

[a, b] := [g(›a), g(›b)],

where ›a and ›b are the unique zeros of the derivative gÕ in the intervals
(max(Gµ1(a1), Gµ2(a2)), 0) and (0, min(Gµ1(b1), Gµ2(b2))), respectively.
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Step 2: Computing the support of µ1 � µ2

gÕ(z) = 1
GÕ

µ1(G≠1
µ1 (z))

+ 1
GÕ

µ2(G≠1
µ2 (z))

+ 1
z2 .

To compute the support we need to be able to evaluate:
- R-transform by Cauchy integral formula

- GÕ(z) = ≠
´ b

a
1

(z≠t)2 dµ(t) (again trapezoidal quadrature rule)

Do binary search! (with caution)
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4th ingredient:
Computing Cauchy transf. Gµ1�µ2

(from its R-transform)
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Step 3: Finding a circle in the image of Gµ1�µ2

Want: Orange circle in Gµ1�µ2(C fi {Œ}\[a, b])

Theorem ([Olver/Nadakuditi’2011])
In the same assumptions of previous theorem,

z œ Gµ1�µ2(C\[a, b]) … sgn(Im(g(z))) = ≠sgn(Im(z)).

Again, binary search! (on the radius of the orange circle)
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For z inside the orange curve on the left (�) we can use Cauchy integral formula again!

G̃µ(z) = 1
2fii

ˆ
�

G̃µ(w)
z ≠ w

dw

And we know G̃µ on � because we constructed it as G̃≠1
µ (orange circle).
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To be able to recover the measure, we evaluate G̃µ on a circle of radius r < 1.

When � parametrized by orange circle, integral of a holomorphic function
∆ again, exponential convergence of trapezoidal quadrature rule!

Compute on green circle: G̃µ(z) = r2

2fii

ˆ
ˆD

J≠1
[a,b](g(rv))gÕ(rv)v
J≠1

[a,b](g(rv)) ≠ z
dv.
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5th ingredient:
Stieltjes inversion

Recovering µ1 � µ2 from Gµ1�µ2
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Stieltjes inversion theorem
Objective: Given Gµ, recover the density of the measure µ

Theorem

Assume dµ(t) = f(t)dt for a continuous function f . For any c < d œ (a, b) we have that

≠ 1
fi

lim
Áæ0+

ˆ d

c
Im (Gµ(x + iÁ)) dx = µ([c, d]).

Remark: Theorem also works when considering the limit of Gµ(x + z) with z æ 0, z œ C+ (except,
possibly, in a and b) can consider limit for G̃µ(z) when getting closer to unit disk!

Recall: Gµ(z) =
´ b

a
1

z≠w dw and G̃µ(z) = Gµ(J[a,b](z)) =
qŒ

n=1 gnzn.
We know the value of G̃µ on M equispaced points on the green circle of radius r < 1

pj = r›j
M , ›M = exp

32fii

M

4
, j = 0, 1, 2, . . . , M ≠ 1.

Alice Cortinovis Computing free convolutions via Cauchy integrals 25

y



Final step of the algorithm

If we truncate the power series corresponding to G̃µ to the first M terms we get
S

WWWU

G̃µ(p0)
G̃µ(p1)

...
G̃µ(pM≠1)

T

XXXV
=

S

WWWU

›0
M

›1
M

. . .

›M≠1
M

T

XXXV
· F ·

S

WWWU

g1r
g2r2

...
gM rM

T

XXXV
,

where F is the Fourier matrix of size M ◊ M .
S

WWWWU

f
!

b≠a
2 cos

! 0fi
m

"
+ b+a

2
"

f
!

b≠a
2 cos

! 2fi
m

"
+ b+a

2
"

...

f
1

b≠a
2 cos

1
2(m≠1)fi

m

2
+ b+a

2

2

T

XXXXV
¥ ≠ 1

fi
Im

Q

ccca

S

WWWU

›0
m

›1
m

. . .

›m≠1
M

T

XXXV
· F ·

S

WWWU

g1
g2
...

gm

T

XXXV

R

dddb
.

∆ recover g1, . . . , gM from IFFT and then density via FFT.
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Numerical examples
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Example #1: Semicircle + semicircle

1 Compute Cauchy transforms
ÂGµ1 and ÂGµ2 of blue circle so
that we are able to compute
R-transforms for µ1 and µ2

2 Find support of µ1 � µ2
3 Find orange circle inside

images of Gµ1 , Gµ2 , and
Gµ1�µ2

4 Evaluate G̃µ1�µ2 on green
circle inside G̃≠1

µ1�µ2
(orange

circle)
5 Recover measure from

Stieltjes inversion
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Example #2: Semicircle + Marchenko-Pastur (⁄ = 1
2)

In this case we don’t know the an-
alytic expression of the resulting
distribution, but we can compare it
with the eigenvalue distribution of
the sum of two random 3000◊3000
matrices.
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Example #3: Semicircle + Uniform

Uniform distribution does not have
sqrt-behavior at the boundary,
therefore quadrature rules con-
verge more slowly. Algorithm
works nonetheless.
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Example #4: Semicircle + something weird

Consider distribution µ2 with sup-
port on [≠

Ô
3,

Ô
3] and density

dµ2(t) = 5
Ô

3
144 (t2 + 1)2dt. G2(z) not

invertible, but not a problem for the
algorithm (need to choose a small
orange circle though).
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Free multiplicative convolution
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Theory for free multiplicative convolution

Definition
The T-transform and S-transform of a measure µ are

T (z) =
ˆ b

a

t

z ≠ t
dµ(t) and S(w) = 1 + w

wT ≠1(w) ,

respectively.

These, again, are analytic transforms!

Theorem
Given two measures µ1 and µ2,

Sµ1⇥µ2(w) = Sµ1(w) · Sµ2(w).
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Brief summary of the algorithm

1 Compute Cauchy T transforms T µ1 and T µ2 of circle of radius rA < 1 so that we are able to
compute R-transforms S-transforms for µ1 and µ2

2 Find support of µ1 � µ2 µ1 ⇥ µ2
3 Find circle inside images of T µ1 , T µ2 , and T µ1�µ2

4 Evaluate T̃ µ1�µ2 on a suitable circle
5 Recover measure from a similar version of the Stieltjes inversion theorem.
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Crucial step: Computing support of free multiplicative convolution
Assumptions: µ1 and µ2 satisfy the following properties.

They have compact support [a1, b1] and [a2, b2], with a1, b1, a2, b2 > 0.

Both µ1 and µ2 have sqrt-behavior at the boundary.

The T-transforms Tµ1 and Tµ2 are invertible on their domain of definition.

Theorem ([C./Ying’2023])

Let us define
t(w) := w

1 + w
T ≠1

1 (w)T ≠1
2 (w),

which coincides with T ≠1
µ (w) in a neighborhood of zero. Then:

µ := µ1 ⇥ µ2 has sqrt-behavior at the boundary.

The support of µ is contained in the interval [a, b] := [t(›a), t(›b)], where ›a and ›b are the unique zeros
of the derivative tÕ in the intervals (max(T1(a1), T2(a2)), 0) and (0, min(T1(b1), T2(b2))), respectively.

To check whether a point w is in the image of Tµ1⇥µ2 we can use the following criterion:

w œ Tµ1�µ2 (C\[a, b]) … sgn(Im(t(w))) = ≠sgn(Im(w)).
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Numerical example
Free multiplicative convolution of Marchenko-Pastur distr. with ⁄ = 0.1 and uniform distr. on [1, 3]
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Conclusion

Main ideas: Express the analytic transforms that define free convolutions with Cauchy integral
formula, trapezoidal quadrature rule converges fast.

Open questions:
How to reliably compute support for more general distributions?
What if it is not supported on a single interval?
Can the method be extended to polynomial/rational functions in free random variables?

Python code is available on Github at
https://github.com/Alice94/FreeConvolutionCode

Alice Cortinovis and Lexing Ying (2023).
Computing free convolutions via Cauchy integrals.
https://arxiv.org/abs/2305.01819

Thank you!
alicecor@stanford.edu
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