Spectral norm and strong freeness

March Boedihardjo
Joint work with Afonso Bandeira and Ramon van Handel

UC Berkeley Probabilistic Operator Algebra Seminar August 2023

Gaussian series random matrix

Gaussian series:

$$
\sum_{k} g_{k} A_{k}
$$

where the g_{k} are i.i.d. $N(0,1)$ random variables and the A_{k} are deterministic $d \times d$ matrices

Examples

- GOE
- Sparse Gaussian
- Gaussian Toeplitz

Outline

Spectral norm:

- Estimate by NC Khintchine
- Main result: Remove the dim factor in many cases
- Application: Matrix Spencer Conjecture

Strong freeness:

- Main result
- Example: Sparse Gaussian
- PT conjecture

Noncommutative Khintchine inequality

Theorem (Lust-Piquard and Pisier, ≈ 1990)
If $Z=\sum_{k} g_{k} A_{k}$ is Hermitian, where the g_{k} are i.i.d. $N(0,1)$ random variables and the A_{k} are deterministic $d \times d$ matrices, then

$$
\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}} \leqslant \mathbb{E}\|Z\| \lesssim \sqrt{\log d}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}} .
$$

Problem

When is the $\sqrt{\log d}$ factor needed?

$$
\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}} \lesssim \mathbb{E}\|Z\| \lesssim \sqrt{\log d}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}
$$

Examples
(1) If $Z=\left[\begin{array}{ccc}g_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & g_{d}\end{array}\right]$, then $\mathbb{E}\left(Z^{2}\right)=I$ and $\mathbb{E}\|Z\| \approx \sqrt{2 \log d}$.

So log factor is needed.
(2) If $Z=\frac{1}{\sqrt{d}}\left[\begin{array}{ccc}g_{1,1} & \cdots & g_{1, d} \\ \vdots & \ddots & \vdots \\ g_{d, 1} & \cdots & g_{d, d}\end{array}\right]$ is symmetric, then $\mathbb{E}\left(Z^{2}\right)=I$ and $\mathbb{E}\|Z\| \approx 2$.

So \log factor is not needed.

Problem

When is the $\sqrt{\log d}$ factor needed?

$$
\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}} \lesssim \mathbb{E}\|Z\| \lesssim \sqrt{\log d}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}
$$

Examples

(1) If $Z=\left[\begin{array}{ccc}g_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & g_{d}\end{array}\right]$, then $\mathbb{E}\left(Z^{2}\right)=I$ and $\mathbb{E}\|Z\| \approx \sqrt{2 \log d}$.

So log factor is needed. (Commutative)
(2) If $Z=\frac{1}{\sqrt{d}}\left[\begin{array}{ccc}g_{1,1} & \cdots & g_{1, d} \\ \vdots & \ddots & \vdots \\ g_{d, 1} & \cdots & g_{d, d}\end{array}\right]$ is symmetric, then $\mathbb{E}\left(Z^{2}\right)=I$ and $\mathbb{E}\|Z\| \approx 2$.

So log factor is not needed. (Very noncommutative)

Problem

When is the $\sqrt{\log d}$ factor needed?

$$
\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}} \lesssim \mathbb{E}\|Z\| \lesssim \sqrt{\log d}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}
$$

where $Z=\sum_{k} g_{k} A_{k}$ is Hermitian.

Quote from Joel Tropp's monograph (2015):
More commutativity leads to a logarithm, while less commutativity can sometimes result in cancelations that obliterate the logarithm. It remains a major open question to find a simple quantity, computable from the coefficients A_{k}, that decides whether $\mathbb{E}\|Z\|^{2}$ contains a dimensional factor or not.

What this really means...

Does the following type of inequality hold for all Hermitian $Z=\sum_{k} g_{k} A_{k}$?

$$
\mathbb{E}\|Z\| \lesssim\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}+\sqrt{\log d} \sigma_{* *}(Z)
$$

where $\sigma_{* *}(Z)$ measures the noncommutativity of the A_{k} so that when there is enough noncommutativity, $\sigma_{* *}(Z) \ll \frac{\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}}{\sqrt{\log d}}$.

What this really means...

Does the following holds for all Hermitian $Z=\sum_{k} g_{k} A_{k}$?

$$
\mathbb{E}\|Z\| \lesssim\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}+\sqrt{\log d} \sigma_{* *}(Z)
$$

where $\sigma_{* *}(Z)$ measures the noncommutativity of the A_{k} so that when there is enough noncommutativity, $\sigma_{* *}(Z) \ll \frac{\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}}{\sqrt{\log d}}$.

Conjecture (2015):
$\sigma_{* *}(Z)=\max _{\|u\|=\|v\|=1}\left(\mathbb{E}|\langle Z u, v\rangle|^{2}\right)^{\frac{1}{2}}$ might work?

Conjecture

If $Z=\sum_{k} g_{k} A_{k}$ is Hermitian, where the g_{k} are i.i.d. $N(0,1)$ random variables and the A_{k} are deterministic $d \times d$ matrices, then

$$
\mathbb{E}\|Z\| \lesssim\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}+\sqrt{\log d} \max _{\|u\|=\|v\|=1}\left(\mathbb{E}|\langle Z u, v\rangle|^{2}\right)^{\frac{1}{2}}
$$

- Known to hold for many cases including independent entries
- If this conjecture were true, then we have

An estimate for the spectral norm
\checkmark easy to use
\checkmark covers a wide range of random matrices
\checkmark sharp in many cases

Conjecture

If $Z=\sum_{k} g_{k} A_{k}$ is Hermitian, where the g_{k} are i.i.d. $N(0,1)$ random variables and the A_{k} are deterministic $d \times d$ matrices, then

$$
\mathbb{E}\|Z\| \lesssim\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}+\sqrt{\log d} \max _{\|u\|=\|v\|=1}\left(\mathbb{E}|\langle Z u, v\rangle|^{2}\right)^{\frac{1}{2}}
$$

- Known to hold for many cases including independent entries
- If this conjecture were true, then we have

An estimate for the spectral norm
\checkmark easy to use
\checkmark covers a wide range of random matrices
\checkmark sharp in many cases including i.i.d. entries

- Bandeira, B., van Handel: This conjecture is not true.

Conjecture disproved

Theorem (Bandeira, B., van Handel)
If $\sigma_{* *}()$ satisfy
(1) $\sigma_{* *}\left(Z_{1}+Z_{2}\right) \leq C\left(\sigma_{* *}\left(Z_{1}\right)+\sigma_{* *}\left(Z_{2}\right)\right)$
(2) $\sigma_{* *}\left(U Z U^{*}\right)=\sigma_{* *}(Z)$ where U is a deterministic unitary
(3) $\sigma_{* *}(Z \otimes I)=\sigma_{* *}(Z)$
(4) $\sigma_{* *}\left(\frac{1}{\sqrt{d}}\left[\begin{array}{ccc}g_{1,1} & \ldots & g_{1, d} \\ \vdots & \ddots & \vdots \\ g_{d, 1} & \cdots & g_{d, d}\end{array}\right]\right)=o\left((\log d)^{-\beta}\right)$
then there is some Hermitian $Z=\sum_{k} g_{k} A_{k}$ that breaks

$$
\mathbb{E}\|Z\| \lesssim\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}+(\log d)^{\beta} \sigma_{* *}(Z)
$$

Example
$\sigma_{* *}(Z)=\max _{\|u\|=\|v\|=1}\left(\mathbb{E}|\langle Z u, v\rangle|^{2}\right)^{\frac{1}{2}}$ satisfies (1)-(4).

Affirmative side: An important first step

Theorem (Tropp 2015)
For every $d \times d$ Hermitian $Z=\sum_{k} g_{k} A_{k}$,

$$
\mathbb{E}\|Z\| \lesssim(\log d)^{\frac{1}{4}}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}+\sqrt{\log d} w(Z),
$$

where

$$
w(Z)=\sup _{Q, U, V}\left\|\mathbb{E} Z_{1} Q Z_{2} U Z_{1} V Z_{2}\right\|^{1 / 4},
$$

Z_{1}, Z_{2} are independent copies of Z and the sup is over all unitary Q, U, V

Example

$$
\text { If } Z=\frac{1}{\sqrt{d}}\left[\begin{array}{ccc}
g_{1,1} & \cdots & g_{1, d} \\
\vdots & \ddots & \vdots \\
g_{d, 1} & \cdots & g_{d, d}
\end{array}\right] \text {, this gives } \mathbb{E}\|Z\| \leq(\log d)^{\frac{1}{4}} \text {. }
$$

Tropp's quantity

$$
w(Z)=\sup _{Q, U, V}\left\|\mathbb{E} Z_{1} Q Z_{2} U Z_{1} V Z_{2}\right\|^{1 / 4}
$$

measures noncommutativity in the following sense:

- Always $w(Z) \leq\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}$
- If $Z=\sum_{k} g_{k} A_{k}$ with all the A_{k} commuting, then $w(Z)=\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}$
- If $Z=\left[\begin{array}{ccc}g_{1,1} & \cdots & g_{1, d} \\ \vdots & \ddots & \vdots \\ g_{d, 1} & \cdots & g_{d, d}\end{array}\right]$ then $w(Z) \sim d^{\frac{1}{4}}$ and $\left\|\mathbb{E} Z^{2}\right\|^{\frac{1}{2}} \sim \sqrt{d}$.

Theorem (Tropp 2015)
For every $d \times d$ Hermitian $Z=\sum_{k} g_{k} A_{k}$,

$$
\mathbb{E}\|Z\| \lesssim(\log d)^{\frac{1}{4}}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}+\sqrt{\log d} w(Z)
$$

- Not sharp due to the $(\log d)^{\frac{1}{4}}$ factor.
- $w(Z)$ is very difficult to compute.

Bandeira, B., van Handel:

$$
w(Z) \leq \sqrt{\|\operatorname{Cov}(Z)\|^{\frac{1}{2}}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}}
$$

Main result: Spectral norm

Theorem (Bandeira, B., van Handel, Inv. Math. 2023)
For every $d \times d$ Hermitian $Z=\sum_{k} g_{k} A_{k}$,

$$
\mathbb{E}\|Z\| \leq 2\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}+C(\log d)^{\frac{3}{4}} \sqrt{\|\operatorname{Cov}(Z)\|^{\frac{1}{2}}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}} .
$$

Example
If $Z=\left[\begin{array}{ccc}g_{1,1} & \ldots & g_{1, d} \\ \vdots & \ddots & \vdots \\ g_{d, 1} & \cdots & g_{d, d}\end{array}\right]$ then this gives

$$
\mathbb{E}\|Z\| \leq 2 \sqrt{d}+C(\log d)^{\frac{3}{4}} d^{\frac{1}{4}} .
$$

Correct estimate: $\mathbb{E}\|Z\| \approx 2 \sqrt{d}$.

More general setting

Theorem (Bandeira, B., van Handel)
Let Z_{1}, \ldots, Z_{n} be independent $d \times d$ symmetric random matrices with $\mathbb{E} Z_{i}=0$. Let $Z=\sum_{i=1}^{n} Z_{i}$. Then
$\mathbb{E}\|Z\| \lesssim\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}+(\log d)^{\frac{3}{2}}\|\operatorname{Cov}(Z)\|^{\frac{1}{2}}+(\log d)^{2}\left(\mathbb{E} \max _{i}\left\|Z_{i}\right\|_{F}^{2}\right)^{\frac{1}{2}}$.

Sharp for

- very sparse matrices
- many patterned matrices
- some block models

Matrix Spencer Conjecture
If $A_{1}, \ldots, A_{n} \in \mathbb{R}^{n \times n}$ with $\left\|A_{i}\right\| \leq 1$, then $\exists \epsilon_{1}, \ldots, \epsilon_{n} \in\{ \pm 1\}$ s.t.

$$
\left\|\sum_{i=1}^{n} \epsilon_{i} A_{i}\right\| \leq C \sqrt{n} .
$$

Can be thought of as: How small can the following quantity be?

$$
\inf _{S \subset\{1, \ldots, n\}}\left\|\sum_{i \in S} A_{i}-\sum_{i \in S^{c}} A_{i}\right\|
$$

Matrix Spencer Conjecture
If $A_{1}, \ldots, A_{n} \in \mathbb{R}^{n \times n}$ with $\left\|A_{i}\right\| \leq 1$, then $\exists \epsilon_{1}, \ldots, \epsilon_{n} \in\{ \pm 1\}$ s.t.

$$
\left\|\sum_{i=1}^{n} \epsilon_{i} A_{i}\right\| \leq C \sqrt{n} .
$$

Note: $C \sqrt{n}$ is sharp even for rank 1, e.g., $A_{i}=e_{1}^{T} e_{i}$

Notable consequence of our result

Matrix Spencer Conjecture
If $A_{1}, \ldots, A_{n} \in \mathbb{R}^{n \times n}$ with $\left\|A_{i}\right\| \leq 1$, then $\exists \epsilon_{1}, \ldots, \epsilon_{n} \in\{ \pm 1\}$ s.t.

$$
\left\|\sum_{i=1}^{n} \epsilon_{i} A_{i}\right\| \leq C \sqrt{n} .
$$

Theorem (Bansal, Jiang, Meka, STOC 2023)
If $A_{1}, \ldots, A_{n} \in \mathbb{R}^{n \times n}$ with $\left\|A_{i}\right\| \leq 1$ and $\operatorname{rank}\left(A_{i}\right) \leq n / \log ^{3} n$, then $\exists \epsilon_{1}, \ldots, \epsilon_{n} \in\{ \pm 1\}$ s.t.

$$
\left\|\sum_{i=1}^{n} \epsilon_{i} A_{i}\right\| \leq C \sqrt{n} .
$$

Strong freeness

Let X_{d} and Y_{d} be $d \times d$ symmetric random matrices.

Asymptotic freenes:

$$
\lim _{d \rightarrow \infty} \frac{1}{d} \operatorname{Tr} P\left(X_{d}, Y_{d}\right)=\tau(P(a, b)) \text { a.s. }
$$

where a and b are freely independent variables.
Strong asymptotic freeness: In addition,

$$
\lim _{d \rightarrow \infty}\left\|P\left(X_{d}, Y_{d}\right)\right\|=\|P(a, b)\| \text { a.s.. }
$$

GUE matrices

Suppose $X_{d}=\frac{1}{\sqrt{d}}\left[\begin{array}{ccc}g_{1,1} & \ldots & g_{1, d} \\ \vdots & \ddots & \vdots \\ g_{d, 1} & \ldots & g_{d, d}\end{array}\right]$ and
Y_{d} is an independent copy of X_{d}.
Voiculescu 1991:

$$
\lim _{d \rightarrow \infty} \frac{1}{d} \operatorname{Tr} P\left(X_{d}, Y_{d}\right)=\tau(P(a, b)) \text { a.s. }
$$

where a and b are freely independent semicircular variables.

Haagerup-Thorbjørsen 2005:

$$
\lim _{d \rightarrow \infty}\left\|P\left(X_{d}, Y_{d}\right)\right\|=\|P(a, b)\| \text { a.s.. }
$$

Consequence: $\operatorname{Ext}\left(C_{\text {red }}^{*}\left(F_{2}\right)\right)$ is not a group.

Strong asymptotic freeness holds for

- Wigner and deterministic (Belinschi, Capitaine 2016) Prior work by Schultz, Capitaine, Donati-Martin, Anderson, Male
- Haar unitary and deterministic (Collins, Male 2014)
- Random permutations (Bordenave, Collins 2019)

Main result: Strong freeness

Theorem (Bandeira, B., van Handel)
Let $X_{d}^{(1)}, \ldots, X_{d}^{(r)}$ be $d \times d$ self-adjoint random matrices with jointly Gaussian entries, $\mathbb{E} X_{d}^{(i)}=0, \mathbb{E}\left(X_{d}^{(i)}\right)^{2}=1$.
(1) If $\left\|\operatorname{Cov}\left(X_{d}^{(i)}\right)\right\|=o(1)$ as $d \rightarrow \infty$ then

$$
\lim _{d \rightarrow \infty} \mathbb{E} \operatorname{tr} P\left(X_{d}^{(1)}, \ldots, X_{d}^{(r)}\right)=\tau\left(P\left(s_{1}, \ldots, s_{r}\right)\right)
$$

where s_{1}, \ldots, s_{r} are free semicircular variables.
(2) If $\left\|\operatorname{Cov}\left(X_{d}^{(i)}\right)\right\|=o\left((\log d)^{-3}\right)$ as $d \rightarrow \infty$ then

$$
\lim _{d \rightarrow \infty}\left\|P\left(X_{d}^{(1)}, \ldots, X_{d}^{(r)}\right)\right\|=\left\|P\left(s_{1}, \ldots, s_{r}\right)\right\| \quad \text { a.s. }
$$

where s_{1}, \ldots, s_{r} are free semicircular variables.

Sparse matrices

For $d \in \mathbb{N}$, let G_{d} be a m_{d}-regular graph on d vertices.
Let X_{d} be $d \times d$ with

$$
X_{d}(i, j)= \begin{cases}\frac{1}{\sqrt{m_{d}}} g_{i, j}, & (i, j) \in \operatorname{Edge}\left(G_{d}\right) \\ 0, & \text { Otherwise }\end{cases}
$$

Bandeira, B., van Handel:

If $m_{d} \gg(\log d)^{3}$, then i.i.d. copies of X_{d} are strongly asymptotically free.

Previously not even known for any $m_{d}=o(d)$.

Peterson-Thom conjecture

Theorem (Bandeira, B., van Handel)
If $n(d)=o\left(d /(\log d)^{3}\right)$ then
$\lim _{d \rightarrow \infty}\left\|P\left(X_{d}^{(1)} \otimes I_{n(d)}, \ldots, X_{d}^{(r)} \otimes I_{n(d)}, I_{d} \otimes Y_{n(d)}^{(1)}, \ldots, I_{d} \otimes Y_{n(d)}^{(r)}\right)\right\|$
$=\left\|P\left(s_{1} \otimes 1, \ldots, s_{r} \otimes 1,1 \otimes s_{1}, \ldots, 1 \otimes s_{r}\right)\right\| \quad$ a.s.

Ben Hayes: PT conjecture is true if the above holds for $n(d)=d$
Belinschi, Capitaine proposed the first proof of this
Alternative proof by Bordenave, Collins

Classical vs. Free

Noncommutative Khintchine: If $Z=\sum_{k} g_{k} A_{k}$ is Hermitian, where the g_{k} are i.i.d. $N(0,1)$ random variables and the A_{k} are deterministic $d \times d$ matrices, then

$$
\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}} \lesssim \mathbb{E}\|Z\| \lesssim \sqrt{\log d}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}
$$

Free Khintchine: If $Z=\sum_{k} s_{k} \otimes A_{k}$, where the s_{k} are free semicircular variables, then

$$
\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}} \leq\left\|Z_{\text {free }}\right\| \leq 2\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}
$$

Main result: Spectral norm

Theorem (Bandeira, B., van Handel)
For every $d \times d$ Hermitian $Z=\sum_{k} g_{k} A_{k}$,

$$
\mathbb{E}\|Z\| \leq 2\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}+C(\log d)^{\frac{3}{4}} \sqrt{\|\operatorname{Cov}(Z)\|^{\frac{1}{2}}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}} .
$$

The proof uses free probability:
(1) Let $Z_{\text {free }}=\sum_{k} s_{k} \otimes A_{k}$.
(2) Interpolate between Z and $Z_{\text {free }}$.
(3) $\left\|Z_{\text {free }}\right\| \leq 2\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}$ and the discrepancy from interpolation gives
$C(\log d)^{\frac{3}{4}} \sqrt{\|\operatorname{Cov}(Z)\|^{\frac{1}{2}}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}}$.

Interpolation

For $0 \leq t \leq 1$, let

$$
Z_{t}^{(N)}=\sqrt{t}\left[\begin{array}{ccc}
Z_{1} & & \\
& \ddots & \\
& & Z_{N}
\end{array}\right]+\sqrt{1-t} \frac{1}{\sqrt{N}}\left[\begin{array}{ccc}
Z_{1,1} & \ldots & Z_{1, N} \\
\vdots & \ddots & \vdots \\
Z_{N, 1} & \ldots & Z_{N, N}
\end{array}\right]
$$

For each N,

$$
\left[\begin{array}{lll}
Z_{1} & & \\
& \ddots & \\
& & Z_{N}
\end{array}\right] \stackrel{\text { dist. }}{\sim}
$$

As $N \rightarrow \infty$,

$$
\frac{1}{\sqrt{N}}\left[\begin{array}{ccc}
Z_{1,1} & \ldots & Z_{1, N} \\
\vdots & \ddots & \vdots \\
Z_{N, 1} & \ldots & Z_{N, N}
\end{array}\right] \xrightarrow{\text { dist. }} Z_{\text {free }}
$$

Interpolation

Thus, it suffices to bound

$$
\mathbb{E} \operatorname{Tr}\left(Z_{1}^{(N)}\right)^{p}-\mathbb{E} \operatorname{Tr}\left(Z_{0}^{(N)}\right)^{p}=\int_{0}^{1} \frac{d}{d t} \mathbb{E} \operatorname{Tr}\left(Z_{t}^{(N)}\right)^{p} d t
$$

This can bounded by using Gaussian interpolation on $\mathbb{E} \operatorname{Tr}\left(Z_{t}^{(N)}\right)^{p}$.
Gaussian interpolation: If W and Y are independent centered Gaussian vectors in \mathbb{R}^{m} with independent entries and $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, then

$$
\begin{aligned}
& \frac{d}{d t} \mathbb{E} f(\sqrt{t} W+\sqrt{1-t} Y) \\
= & \frac{1}{2} \sum_{i=1}^{m}\left(\operatorname{Var}\left(W_{i}\right)-\operatorname{Var}\left(Y_{i}\right)\right) \mathbb{E} \frac{\partial^{2} f}{\partial x_{i}^{2}}(\sqrt{t} W+\sqrt{1-t} Y)
\end{aligned}
$$

Interpolation

The following term from Gaussian interpolation

$$
\mathbb{E} \frac{\partial^{2} f}{\partial x_{i}^{2}}(\sqrt{t} W+\sqrt{1-t} Y)
$$

yields something like the following:

$$
\mathbb{E} \operatorname{Tr}\left(A_{i}(\ldots) A_{i}(\ldots)\right)
$$

where the two (...) are correlated random matrices.
Apply Gaussian covariance identity. This yields something like the following.

$$
\operatorname{Tr}\left(A_{i}(\ldots) A_{j}(\ldots) A_{i}(\ldots) A_{j}(\ldots)\right)
$$

Interpolation

Since

$$
w(Z)=\sup _{Q_{1}, U, V}\left\|\sum_{i, j=1}^{n} A_{i} Q A_{j} U A_{i} V A_{j}\right\|^{\frac{1}{4}} \leq \sqrt{\|\operatorname{Cov}(Z)\|^{\frac{1}{2}}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}}
$$

it follows that

$$
\left|\frac{d}{d t} \mathbb{E} \operatorname{Tr}\left(Z_{t}^{(N)}\right)^{p}\right| \leq C p^{4}\|\operatorname{Cov}(Z)\|\left\|\mathbb{E}\left(Z^{2}\right)\right\| \mathbb{E} \operatorname{Tr}\left(Z_{t}^{(N)}\right)^{p-4}
$$

Solving this differential inequality gives
$\left|\left[\mathbb{E} \operatorname{tr}\left(Z_{1}^{(N)}\right)^{2 p}\right]^{\frac{1}{2 p}}-\left[\mathbb{E} \operatorname{tr}\left(Z_{0}^{(N)}\right)^{2 p}\right]^{\frac{1}{2 p}}\right| \leq C p^{\frac{3}{4}} \sqrt{\|\operatorname{Cov}(Z)\|^{\frac{1}{2}}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}}$.

Main result: Spectral norm

Theorem (Bandeira, B., van Handel)
For every $d \times d$ Hermitian $Z=\sum_{k} g_{k} A_{k}$,

$$
\mathbb{E}\|Z\| \leq 2\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}+C(\log d)^{\frac{3}{4}} \sqrt{\|\operatorname{Cov}(Z)\|^{\frac{1}{2}}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}} .
$$

The proof uses free probability:
(1) Let $Z_{\text {free }}=\sum_{k} s_{k} \otimes A_{k}$.
(2) Interpolate between Z and $Z_{\text {free }}$.
(3) $\left\|Z_{\text {free }}\right\| \leq 2\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}$ and the discrepancy from interpolation gives
$C(\log d)^{\frac{3}{4}} \sqrt{\|\operatorname{Cov}(Z)\|^{\frac{1}{2}}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}}$.

Extending to strong freeness

- Apply Gaussian interpolation to $\mathbb{E} \operatorname{Tr}\left|\lambda I-Z_{t}^{(N)}\right|^{-2 p}$ rather than to $\mathbb{E} \operatorname{Tr}\left(Z_{t}^{(N)}\right)^{2 p}$.
- This gives not only

$$
\mathbb{E}\|Z\| \leq\left\|Z_{\text {free }}\right\|+C(\log d)^{\frac{3}{4}} \sqrt{\|\operatorname{Cov}(Z)\|^{\frac{1}{2}}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}}
$$

but also

$$
\operatorname{sp}(Z) \subset \operatorname{sp}\left(Z_{\text {free }}\right)+C(\log d)^{\frac{3}{4}} \sqrt{\|\operatorname{Cov}(Z)\|^{\frac{1}{2}}\left\|\mathbb{E}\left(Z^{2}\right)\right\|^{\frac{1}{2}}}[-1,1],
$$

with high probability.

- By Haagerup-Thorbjørsen's linearization trick, bounding the spectrum gives strong asymptotic freeness.
(1) Combinatorial proof:

The spectral norm of Gaussian matrices with correlated entries A. S. Bandeira and M. T. Boedihardjo
arxiv 2104.02662 (2021)
(2) Analytic proof:

Matrix Concentration Inequalities and Free Probability A. S. Bandeira, M. T. Boedihardjo and R. van Handel Inventiones Mathematicae (2023)
(3) Matrix Spencer:

Resolving Matrix Spencer Conjecture Up to Poly-log Rank N. Bansal, H. Jiang, R. Meka

STOC (2023)

