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How does differentiation affect polynomial roots?

Question

Let {pn}∞n=1 be a sequence of degree n polynomials whose
empirical root measures (ERM) µpn = 1

n

∑
z:pn(z)=0 δz converge

to a probability measure µ. For t ∈ [0, 1), what is the limiting

ERM of p
(⌊tn⌋)
n ?

“Conjecture”/Folklore

The limiting ERM of p
(⌊tn⌋)
n exists, and depends only on µ and t.

This conjecture is not true in general. However, it is true for
polynomials with real roots and (finite) free probability leads to
a remarkably short proof. More precise versions of the
conjecture are still open for random polynomials with complex
roots.
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Real root case

Steinerberger (2019) considered the question for polynomials
with real roots, formally deriving a PDE describing the
dynamics of the limiting measure µt in time.

This derivation
was non-rigorous, and one major unanswered question was
when such a µt exists.
In a seemingly unrelated paper Shlyakhtentko and Tao (2022)
established the same dynamics (up to a rescaling) for the
fractional free convolution powers of a measure µ.
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Free convolution powers

The free convolution power µ⊞k of a probability measure on the
real line is straightforward to define for any integer k ≥ 1.

Simply take freely independent identically distributed (fid)
self-adjoint elements a1, . . . , ak of some free probability space,
each with spectral measure µaj = µ. Then µ⊞k = µa1+···+ak .
It is in fact possible to define µ⊞k for any real number k ≥ 1.
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Corners of matrices/operators

Let a be a self-adjoint element of a free probability space
(M, τ), and let p be a projection freely independent of a such
that τ(p) = λ for some λ ∈ (0, 1).

We can build a new
non-commutative probability space, (Mp, τp) given by:

Mp := {[pap] : a ∈M}

with
τp([pap]) = λ−1τ(pap)

for any a ∈M. We then consider the map πλ :M→Mp by
πλ(a) := [pap].



Corners of matrices/operators

Let a be a self-adjoint element of a free probability space
(M, τ), and let p be a projection freely independent of a such
that τ(p) = λ for some λ ∈ (0, 1). We can build a new
non-commutative probability space, (Mp, τp) given by:

Mp := {[pap] : a ∈M}

with
τp([pap]) = λ−1τ(pap)

for any a ∈M.

We then consider the map πλ :M→Mp by
πλ(a) := [pap].



Corners of matrices/operators

Let a be a self-adjoint element of a free probability space
(M, τ), and let p be a projection freely independent of a such
that τ(p) = λ for some λ ∈ (0, 1). We can build a new
non-commutative probability space, (Mp, τp) given by:

Mp := {[pap] : a ∈M}

with
τp([pap]) = λ−1τ(pap)

for any a ∈M. We then consider the map πλ :M→Mp by
πλ(a) := [pap].



Corners of matrices/operators

Nica and Speicher (1996) proved that if a is a self-adjoint
element inM with law µ, that is freely independent of p, with
λ = 1/k, then kπ(a) has the law µ⊞k for k ∈ N.

We can then
use kπ(a) to define µ⊞k for any k ≥ 1.
From the PDE established by Steinerberger for polynomials and
Shlyakhtentko and Tao for fractional free convolutions one
would expect (at least formally) the limiting ERM of the tn-th

derivative µt (if such a limit exists) to equal µ⊞
1

1−t up to a
rescaling of the support.
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A more explicit connection

This surprising connection has since been established rigorously.

Theorem (Hoskins and Kabluchko 2021, Arizmendi,
Garza-Vargas, Perales 2023)

Let µ be a compactly supported probability measure on the real
line, and let {pn} be a sequence of real rooted polynomials with
limiting ERM µ. For any fixed t ∈ (0, 1), the ERM of the

(⌈tn⌉)-th derivative of pn((1− t)x) converges weakly to µ⊞
1

1−t as
n→∞.

The proof by Arizmendi, Garza-Vargas, and Perales, using the
recently developed finite free convolutions of Marcus, Spielman,
and Srivastava, expresses differentiation explicitly as the finite
free multiplicative convolution with the polynomial
q(x) = xa(1− x)b.
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Similar results

Kabluchko (2021+) established a similar phenomenon for
trigonometric polynomials, namely that the limiting ERM for
high derivatives of a trigonometric polynomial can be expressed
using the free multiplicative convolution with a free unitary
Poisson process.

Further works of Kabluchko (2022+), Hall and Ho (2022+), and
Hall, Ho, Jalowy, and Kabluchko (2023+) suggest free
probabilistic interpretations can be given more to complicated
differential operators applied to very general polynomials, with
specific results on the (backward) heat operator.

Theorem (Kabluchko 2022+)

Let µ be a compactly supported probability measure on the real
line, and let {pn} be a sequence of real rooted polynomials with
limiting ERM µ. Define the polynomial
qn(z; s) = exp

(
− s

2∂
2
z

)
pn(z). Then, the limiting ERM of

qn(z; t
2/n) is µ⊞ SCt.
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Complex roots and non-self-adjoint elements

Our goal was to investigate if a free probabilistic interpretation
could be given for polynomials with complex roots.

However,
this complex setting immediately creates challenges.

▶ Any operators we consider will no longer be self-adjoint.

▶ We could try to work with normal operators instead,
however normality won’t be preserved under ∗-free
addition.

▶ So instead of the spectral measure, we are forced to work
with the Brown measure of any operator involved.

The Brown measure of an element a in (M, τ) is given, in the
distributional sense,

µa =
1

2π
∆ log lim

ε↘0
(exp(log τ((a− z)∗(a− z) + ε))) .
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Complex roots and non-self-adjoint elements cont.

There is good news for the complex root case.

▶ Unlike when Steinerberger considered the real root case, we
have a large number of examples where the ERM of
derivatives are known to converge.

Kabluchko and
Zaporozhets (2014) established the limiting ERM for
random polynomials with independent coefficients, which is
always radially symmetric. Feng and Yao (2019) used this
to establish the limiting ERM for the ⌊tn⌋-th derivative.

▶ O’Rourke and Steinerberger (2021) formally established a
PDE for the root flow under differentiation.

▶ Hoskins and Kabluchko (2021) verified that the Feng–Yao
limit satisfies the O’Rourke–Steinerberger PDE.
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R-diagonal operators

An element a ∈M is said to be R-diagonal if there exists ∗-free
elements u and h inM, such that u is Haar unitary (i.e.
unitary with τ(un) = 0 for any n ∈ N), h is positive, and a has
the same ∗-distribution as uh.

One example is a = s1 + is2, where s1 and s2 self-adjoint free
semicircular elements. In this case a is known as a circular
element with Brown measure dµa =

1
π1|z|≤1.
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Properties of R-diagonal operators

Some important properties of R-diagonal operators:

1. The Brown measure of an R-diagonal operator is radially
symmetric.

2. The set of R-diagonal operators is closed under powers,
free sums, and free products.

3. The Brown measure of a is determined by the spectral
measure of |a| :=

√
a∗a.

4. For any freely independent R-diagonal operators a and b,
µ̃|a+b| = µ̃|a| ⊞ µ̃|b|.
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R-diagonal convolution

Kösters and A. Tikhomirov (2018) used these properties to
define a convolution ⊕ on Brown measures of R-diagonal
operators.

Denote by H the bijection between a class of
symmetric probability measures on R and Brown measures of
R-diagonal operators. Building on work of Haagerup and
Larson (2000), they define

µa ⊕ µb := µa+b = H(H−1(µa)⊞H−1(µb)),

where a and b are ∗-freely independent R-diagonal operators.
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Fractional R-diagonal convolution

As with ⊞, it is clear how to define powers µ⊕m for any m ∈ N.

It is possible to extend this to fractional powers greater than or
equal to 1.

Proposition (C., O’Rourke, Renfrew)

For all j ≥ 1, there exists a probability measure µ⊕j such that
µ⊕j agrees with the j-th power of ⊕ for integer j and {µ⊕j}j≥1

forms a convolution semigroup:(
µ⊕j

)⊕l
= µ⊕jl

for all real j, l ≥ 1.

As was the case with ⊞, ⊕ is extended to fractional powers
through a corner algebra (Mp, τp).
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Kac polynomials and Haar unitaries

Feng and Yao explicitly computed the radial CDF for the
limiting ERM of the ⌊tn⌋-th derivative of a Kac polynomials
pn(z) =

∑n
k=0 ξkz

k.

The limiting ERM of Kac polynomials is
the uniform measure on the unit circle. When t = 1/2, this
measure is, up to a rescaling, also the Brown measure of
(u+ v)2 where u and v are freely independent Haar unitary
operators.
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Figure: The left is a plot of the radial cumulative distribution
function for u+ v. The right it the radial cumulative distribution
function for the 500-th derivative of a degree 1000 Kac polynomial
(up to a push-forward by x 7→

√
x and a rescaling).



Polynomials with independent coefficients

pn(z) =

n∑
k=0

ξkpk,nz
k

P(ξ0 = 0) = 0 and E log(1 + |ξ0|) <∞.

The coefficients pk,n are assumed to satisfy the following
assumption.

Assumption

There exists a function p : [0,∞)→ [0,∞) so that

1. p(t) > 0 for t ∈ [0, 1) and p(t) = 0 for t > 1;

2. p is continuous on [0, 1) and left continuous at 1; and

3. limn→∞ sup0≤k≤n
∣∣|pk,n|1/n − p( kn)∣∣ = 0.

Many radially symmetric probability measures can be recovered
as the limiting ERM of some random polynomials with
independent coefficients.
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R-diagonal operators and random polynomials

Before we state the connection between polynomials with
complex roots and R-diagonal operators we denote by ψ2 the
bijection on radially symmetric probability measures where
ψ2µ(Dr) = µ(D√

r).

Theorem (C., O’Rourke, Renfrew)

Let {pn} be random polynomials with independent coefficients
satisfying the assumptions, where µ is the limiting ERM of pn.
Additionally assume there exists an R-diagonal operator a with
Brown measure ψ−1

2 µ. For t ∈ (0, 1), let µt be the limiting ERM
of the ⌈tn⌉-th derivative of pn((1− t)2x). Then,

µt = ψ2(ψ
−1
2 µ)⊕

1
1−t .
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R-diagonal operators and random polynomials

Brown Measure
ψ2−−−−→ Polynomial Root Measurey(·)⊕

1
1−t

y dtn

dztn

Convolution Brown Measure
ψ−1
2←−−−− Derivative Root Measure



Why look for a free probability connection?

“Conjecture”/Folklore

The limiting ERM of p
(⌊tn⌋)
n exists, and depends only on µ and t.

The when pn has real roots this conjecture holds and free
probability leads to a short proof. However, the conjecture is
not true in general:

pn(z) =

n∑
k=0

ξkz
k,

and
qn(z) = zn − n−2023

both have limiting ERM uniform on the unit circle. However,

the limiting ERM of p
(⌊tn⌋)
n is not δ0.
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Why look for a free probability connection?

A similar phenomenon occurs with matrices.

1. We begin with some sequence of matrices (polynomials)
{An} ({pn}).

2. We associate the sequence with its limiting ∗-moments
(root measure).

3. In the self-adjoint (real rooted) case this exactly determines
the limiting spectral measure (differentiated root measure).

4. In the non-self-adjoint (complex root) case the instability
of eigenvalues (roots) under small perturbations leads to
counter examples.

5. However, for random objects one expects to avoid these
counterexamples with high probability.



Why look for a free probability connection?

A similar phenomenon occurs with matrices.

1. We begin with some sequence of matrices (polynomials)
{An} ({pn}).

2. We associate the sequence with its limiting ∗-moments
(root measure).

3. In the self-adjoint (real rooted) case this exactly determines
the limiting spectral measure (differentiated root measure).

4. In the non-self-adjoint (complex root) case the instability
of eigenvalues (roots) under small perturbations leads to
counter examples.

5. However, for random objects one expects to avoid these
counterexamples with high probability.



Why look for a free probability connection?

A similar phenomenon occurs with matrices.

1. We begin with some sequence of matrices (polynomials)
{An} ({pn}).

2. We associate the sequence with its limiting ∗-moments
(root measure).

3. In the self-adjoint (real rooted) case this exactly determines
the limiting spectral measure (differentiated root measure).

4. In the non-self-adjoint (complex root) case the instability
of eigenvalues (roots) under small perturbations leads to
counter examples.

5. However, for random objects one expects to avoid these
counterexamples with high probability.



Why look for a free probability connection?

A similar phenomenon occurs with matrices.

1. We begin with some sequence of matrices (polynomials)
{An} ({pn}).

2. We associate the sequence with its limiting ∗-moments
(root measure).

3. In the self-adjoint (real rooted) case this exactly determines
the limiting spectral measure (differentiated root measure).

4. In the non-self-adjoint (complex root) case the instability
of eigenvalues (roots) under small perturbations leads to
counter examples.

5. However, for random objects one expects to avoid these
counterexamples with high probability.



Why look for a free probability connection?

A similar phenomenon occurs with matrices.

1. We begin with some sequence of matrices (polynomials)
{An} ({pn}).

2. We associate the sequence with its limiting ∗-moments
(root measure).

3. In the self-adjoint (real rooted) case this exactly determines
the limiting spectral measure (differentiated root measure).

4. In the non-self-adjoint (complex root) case the instability
of eigenvalues (roots) under small perturbations leads to
counter examples.

5. However, for random objects one expects to avoid these
counterexamples with high probability.



Why look for a free probability connection?

A similar phenomenon occurs with matrices.

1. We begin with some sequence of matrices (polynomials)
{An} ({pn}).

2. We associate the sequence with its limiting ∗-moments
(root measure).

3. In the self-adjoint (real rooted) case this exactly determines
the limiting spectral measure (differentiated root measure).

4. In the non-self-adjoint (complex root) case the instability
of eigenvalues (roots) under small perturbations leads to
counter examples.

5. However, for random objects one expects to avoid these
counterexamples with high probability.



Why look for a free probability connection?

Conjecture (Kabluchko, Hoskins–Kabluchko)

The limiting ERM of p
(⌊tn⌋)
n exists, and depends only on µ and

t, given that pn is random with independent identically
distributed roots.

Current approaches to this problem require sophisticated
anti-concentration estimates and the state of the art can handle
tn ≈ log n/ log logn (Michelen and T. Vu 2022+). Perhaps free
probability could lead to progress on this conjecture, similar to
Śniady’s work on regularizing Brown measures and the circular
law.
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Consequences

With a connection to sums of (free) random variables
established, it is natural to look for central limit behavior of
repeated differentiation.

The following can be interpreted as a
generalized central limit theorem for polynomials under
differentiation.

Theorem (C., O’Rourke, Renfrew)

Let µ be a measure arising as the limiting ERM of some
random polynomials with independent coefficients, pn(z), such

that µ(C \ Dr) ∼ r−
α

2−α for some α ∈ (0, 2]. Additionally let µt
denote the limiting ERM (established by Feng and Yao) of

p
(⌊tn⌋)
n ((1− t)2−

2
α z). Then, µt converges weakly to µα as

t→ 1−, where µα is a probability measure depending only on α.

µ2 is the probability measure on the unit disk with density
1

2π|z| , i.e. the image of the circular law under ψ2.
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Stable laws under differentiation

The measures µα are stable in the following sense:

If pn is a
sequence of random polynomials with independent coefficients
with limiting ERM µα, then for any t ∈ [0, 1) the limiting ERM

of p
(⌊tn⌋)
n is a dilation of µα.

The radial CDF Φα(r) = µα(Dr) has inverse (or radial quantile
function)

Φ⟨−1⟩
α (x) =

x

(1− x)
2
α
−1
,

x ∈ [0, 1). Kösters and Tikhomirov defined the notion of
measure being ⊕-stable and observed a one-to-one
correspondence between ⊕-stable distributions and symmetric
⊞-stable distributions. In fact, ψ−1

2 µα are the ⊕-stable
distributions identified by Kösters and Tikhomirov.
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Stable laws as operators and polynomials

1. α = 2: The R-diagonal operator with Brown measure
ψ−1
2 µ2 is the circular operator, and the polynomials

associated to µ2 is the (rescaled) random Taylor

polynomials pn(z) =
∑n

k=0
nk

k! ξkz
k.

2. α = 1: The R-diagonal operator with Brown measure
ψ−1
2 µ1 is xy−1, where x and y are freely independent

circular operators. The polynomials associated to µ1 are
pn(z) =

∑n
k=0

(
n
k

)
ξkz

k.

3. α = 2
1+l , l ∈ N: R-diagonal with Brown measure ψ−1

2 µα is

x0x
−1
1 · · ·x

−1
l , and the polynomials are

pn(z) =
n∑
k=0

(
k!

nk

)l−1(n
k

)l
ξkz

k
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The fractional convolution revisited

Haagerup and Larson (2000) had established how to recover the
Brown measure of an R-diagonal operator for its positive
component.

Theorem (Haagerup and Larson)

Let a be an R-diagonal operator, then Brown measure of a is
radially symmetric and its radial CDF is given by:

Fa(r) := µa(Dr) = 1 + S⟨−1⟩
a∗a (r−2)

for r in some suitable range, where Sa∗a is the S-transform of
a∗a.
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The fractional convolution revisited

The key property of S-transforms is that they factor over free
products,

Sab(z) = Sa(z)Sb(z),

for freely independent a and b.

Lemma (C., O’Rourke, Renfrew)

Let p ∈M be a projection with τ(p) = λ ∈ (0, 1], and a ∈M be
R-diagonal, such that p is ∗-free from a. Then

Sλ−2πλ(a)πλ(a)∗(z) =
λ(1 + λz)

1 + z
Saa∗(λz).
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Fractional convolution

After establishing the evolution of Saa∗ under the corner
process, we can then establish the evolution of the radial
quantile function under ⊕:

F
⟨−1⟩
t (x) =

√
x

(1− t)(x(1− t) + t)
F ⟨−1⟩
a ((1− t)x+ t).

The limiting radial quantile functions of random polynomials
with independent coefficients established by Feng and Yao, and
Hoskins and Kabluchko satisfy:

Φ
⟨−1⟩
t (x) =

x(1− t)
x(1− t) + t

Φ
⟨−1⟩
0 ((1− t)x+ t).

These are equal, after applying ψ2, up to a factor of (1− t)2.



Fractional convolution

After establishing the evolution of Saa∗ under the corner
process, we can then establish the evolution of the radial
quantile function under ⊕:

F
⟨−1⟩
t (x) =

√
x

(1− t)(x(1− t) + t)
F ⟨−1⟩
a ((1− t)x+ t).

The limiting radial quantile functions of random polynomials
with independent coefficients established by Feng and Yao, and
Hoskins and Kabluchko satisfy:

Φ
⟨−1⟩
t (x) =

x(1− t)
x(1− t) + t

Φ
⟨−1⟩
0 ((1− t)x+ t).

These are equal, after applying ψ2, up to a factor of (1− t)2.



Fractional convolution

After establishing the evolution of Saa∗ under the corner
process, we can then establish the evolution of the radial
quantile function under ⊕:

F
⟨−1⟩
t (x) =

√
x

(1− t)(x(1− t) + t)
F ⟨−1⟩
a ((1− t)x+ t).

The limiting radial quantile functions of random polynomials
with independent coefficients established by Feng and Yao, and
Hoskins and Kabluchko satisfy:

Φ
⟨−1⟩
t (x) =

x(1− t)
x(1− t) + t

Φ
⟨−1⟩
0 ((1− t)x+ t).

These are equal, after applying ψ2, up to a factor of (1− t)2.



Fractional convolution

After establishing the evolution of Saa∗ under the corner
process, we can then establish the evolution of the radial
quantile function under ⊕:

F
⟨−1⟩
t (x) =

√
x

(1− t)(x(1− t) + t)
F ⟨−1⟩
a ((1− t)x+ t).

The limiting radial quantile functions of random polynomials
with independent coefficients established by Feng and Yao, and
Hoskins and Kabluchko satisfy:

Φ
⟨−1⟩
t (x) =

x(1− t)
x(1− t) + t

Φ
⟨−1⟩
0 ((1− t)x+ t).

These are equal, after applying ψ2, up to a factor of (1− t)2.



S-transform and polynomial coefficients

For an R-diagonal operator a the radial quantile function can
be related to the S-transform of a∗a by:

F ⟨−1⟩
a (x) =

1√
Sa∗a(x− 1)

.

To build the coefficients which have limiting radial quantile
function Φ⟨−1⟩ one should take the choice of polynomials

pk,n = exp

(
−n
∫ k/n

0
log Φ⟨−1⟩(t) dt

)
.

Repeated differentiation is interpreted in terms of fractional ⊕
powers by observing (through these relations) the affects of
both processes on the radial quantile functions of the measures.
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Thank you!


