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Our Theme



The Connection

All are connected via Optimal Mass Transport.



Optimal Mass Transport

Monge Transportation Cost (1781): Consider the engineerôsproblem of

transporting a pile of soil or rubble to an excavation with the least amount of

work
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Wasserstein Metric
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Algorithm for Optimal Transport Quadratic Case (AHT)
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Optimal Mass Transport-Geodesic



Numerous Applications of OMT

Å Image/signal processing, machine learning, computational 

fluid dynamics, meteorology, control, complex networks, 

data fusion, econometrics, thermodynamics, physics, é..

Lei Zhu, Yan Yang, Steven Haker, and Allen Tannenbaum, ñAn Image Morphing Technique Based on Optimal Mass Preserving Mapping,ò 

IEEE Image Processing, volume 16, pp. 1481-1495, 2010. DOI: 10.1109/TIP.2010.896637



Glymphatic System



Texture Mapping
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Interpolation and Prediction: TBI
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Motivation: Cancer Network as Robust System



Robustness & Fragility

Å If node/edge x is perturbed, how does the network

react to such a change. A highly robust network

continues to operate in a similar manner with

respect to its functionality.

Quantitively:

III. BIOLOGICAL NETWORKS - CANCER

I. GRAPH THEORY

II. SUPPLY CHAIN AND FINANCIAL NETWORKS - CRISIS

Å Consider a network perturbation (fluctuation) that will

result in a deviation of an observable from its

unperturbed value. How quickly will this return to

equilibrium (e.g., decay rate)?

Network Robustness & Fragility: 

Let denote the probability that the mean deviates

by more than at time t (with as ), then

Å

measures the decay rate [1].

Å Robustness is measured as the ability to withstand

perturbations (noise) or stochastic fluctuations to a

network yet still allow for ``information to be passedôô

in a reliable manner.

DoD Supply Chain [2]

(risk propagates through primes and subs)

2008 Financial Crisis [3]

(small/large banks - risk exposure)
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[1] Albert, R. et al. Statistical mechanics of complex networks. Reviews of Modern Physics. 74, 47 (2002).

http:// about.bgov.com /bgov200/bgov -analysis/competition -cooperation -among -defense -contractors -bgov -insight/[2]

[3] Battiston , S. et al. DebtRank :  Too Central to Fail? Financial Networks, the FED and Systemic Risk.  Scientific Reports 2 (2012).



Wasserstein Distance: Discrete

Wasserstein 1-Metric:

Let ɛ1 and ɛ2 now be two discrete distributions with same total mass over n points, respectively, and let d(x,y)

represent the distance between such samples (for the case of graphs, this is simply taken to be the hop

distance). Then, W1(ɛ1,ɛ2) may be described as follows:

where is a coupling (or flow) subject to the following constraints: 

The cost above finds the optimal coupling of moving a set of mass from distributions ɛ1 to ɛ2 with minimal ñworkò[4]. 

[4] Rubner, Y et. al.  The earth moverôs distance as a metric for image retrieval.  International Journal of Computer Vision. 42 (2000)

1 1 2

, 1

( , ) min ( , ) ( , )
n

i j i j

i j

W d x x x xm m m
=

= ä

( , )x ym



Generalities on Ricci Curvature

Curvature:

Sectional Curvature:

Ricci Curvature:

Å Curvature, in the broad sense, is a measure by which a geometrical object deviates from being flat, and

is defined in varying manners given context [5].

Å For M an n-dimensional Riemannian manifold, , let denote the tangent space at x, and u1,u2ᶰ
TxM orthonormal vectors. Then for geodesics ɔi(t) := exp(tui), i = 1,2, the sectional curvature K(u1,u2)

measures the deviation of geodesics relative to Euclidean geometry, i.e.,

Å The Ricci curvature is the average sectional curvature. Namely, given a (unit) vector u ᶰTxM, we

complete it to an orthonormal basis u,u2,...,un. Then the Ricci curvature is defined by

Where we note there might be several scaling factors and it may be extended to the quadratic form, yielding

the so-called Ricci curvature tensor. Ricci curvature is also strongly related to the Laplace-Beltrami operator

and in geodesic normal coordinates, we have

where gij denotes the metric tensor on M.

x Î M TxM

d g1(t),g2(t)( ) = 2t 1-
K(u1,u2)
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Ric(u) :=
1

n- 1
K(u,ui )

i=2

n

å

Rij = - 3/ 2Dgij

DoCarmo, M. Riemannian Geometry (Birkhauser, 1992).[5]



Generalities on Ricci Curvature

Ricci Curvature (conôt):

ÅWe can alternatively describe Ricci curvature as the spreading of geodesics. Let ɔdenote a geodesic

andɔs a smooth one parameter family of geodesics withɔ0 =ɔ. Then a Jacobi field may be defined as

Curvature in Terms of Jacobian

It may be regarded as an infinitesimal deformation of the given geodesic.

Then it is standard that J(t) (essentially the Jacobian of the exponential map)

satisfies the Jacobi equation:

where denotes covariant derivative, and R is the Riemann curvature tensor.

ÅWe want to extend these notions to discrete graphs and networks - ordinary differentiability does not

apply. A nice argument (due to Villani)[6] approaches this problem through convexity. More precisely, let f:

RnŸ R. Then if f is C2, convexity may be characterized as for all x. One may also define

convexity in a synthetic manner:

Discrete Spaces:

Following this, one may define a synthetic notion of Ricci curvature in terms of so-called displacement

convexity inherited from the Wasserstein geometry on probability measures.

J(t) =
dgs(t)

ds
|s=0

D

dt

Ð2 f (x)²0

f ((1- t)x+ty) £ (1- t) f (x)+tf (y)

[6] Lott, J. & Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics. 169, 903-991 (2009).



Explaining Curvature to Boltzmann



Ricci Curvature and Entropy

Lott, Sturm, and Villani:

Let (X,d,m) denote a geodesic space, and set:

We define

Which is the negative of the Boltzmann entropy Se(ɛ):= -H(ɛ); note concavity of Se is equivalent to the

convexity of H. Then we say that X has Ricci curvature bounded from below by k if for every

This indicates the positive correlation of entropy and curvature that we will express as

We now need to connect Ricci curvature and entropy to the notion of robustness (next slide) as well as

define appropriate notions of curvature/entropy for discrete spaces (graphs).

m0,m1 Î P(X)
there exists a constant speed geodesic ɛt with respect to the Wasserstein 2-metric connecting ɛ0 and ɛ1

such that

Se(mt ) ³ tSe(m0)+(1- t)Se(m1)+
kt(1- t)

2
W(m0,m1)

2, 0£ t £1

DSe³DRic²0

[6] Lott, J. & Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics. 169, 903-991 (2009).



Curvature and Robustness

Recall Definition of Robustness:

If we let denote the probability that the mean deviates by more than at time t (with as ),

then

Å

measures the decay rate.

Fluctuation Theorem:  

The Fluctuation Theorem is a realization of this fact for networks and can be expressed as:

In thermodynamics, it is well-known that entropy and rate functions from large deviations are closely related.Å

This can now be further extended to be

Å The Fluctuation Theorem has consequences for just about any type of network: biological , communication ,

social , or neural . In rough terms, it means that the ability of a network to maintain its functionality in the face of

perturbations (internal or external), can be quantified by the correlation of activities of various elements that

comprise the network.

Network Entropy & Curvature:

Given a Markov chain ,

Network Entropy can be defined as

Å

We now need an appropriate definition of Ricci curvature for a network.Å
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Pictorial Motivation for Ollivier Ricci Curvature

Ollivier-Ricci Curvature
Motivation:

Definition:

Å We employ the notion of Ollivier-Ricci curvature motivated by adopting coarse geometric properties [7]

Å Two very close points x and y with tangent vectors w and

wǋ, in which wǋis obtained by a parallel transport of w, the

two geodesics will get closer if the curvature is positive.

Å Distance between two small (geodesic balls) is less than

the distance of their centers. Ricci curvature along

direction x-y reflects this, averaged on all directions w at

x.

Formally, we define for (X,d) a metric space equipped with a family of probability measures {ɛx : x Xɴ}, the 

Ollivier-Ricci curvature along the geodesic connecting x and y via 

and the sum is taken over all neighbors of x where wxy denotes the weight of an edge connecting x and y (it

is taken as zero if there is no connecting edge between x and y). The measure ɛx may be regarded as the

distribution of a one-step random walk starting from x.

where W1 denotes the Wasserstein 1-metric defined previously and d(x,y) is the geodesic (hop) distance on 

a graph.  For the case of weighted graphs, we set

W1(mx,my) = (1- k (x,y))d(x,y)

dx = wxy

y

å

mx(y) :=
wxy

dx

k (x,y)

[7] Ollivier, Y. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris. 345, 643 -646 (2007)



Curvature: Cancer Hallmark?

Is Curvature a Cancer Hallmark?: Analysis


