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All are connected via Optimal Mass Transport.



Optimal Mass Transport

Monge Transportation Cost (1781): Consider the e n g i n @rebleid of
transporting a pile of soil or rubble to an excavation with the least amount of
work




Monge's formulation Le mémoire sur les déblais et les rem-

blais
Gaspard Monge 1781

- -~

inf [ flo \1;(;32I|2du(fv)

where T#pu = v



Kantorovich's formulation

it [z =yl dniay)
w€ll(po,p1) ’

where TI(p, v) are “couplings’:
f,y‘rr(da:, dy) = po(x)dx — dp(x)

fm w(dx,dy) = p1(y)dy = dv(y).




B&B's fluid dynamic formulation

Benamou and Brenier (2000):

mf/ / |v(x, t)||*p(x, t)dtdz

(P v)
a + V. (’Up) =0
p(x,0) = po(x), p(y.1) = p1(y)

McCann, Gangbo, Otto, Villani,



Wasserstein Metric

Jy=__inf [z =yl dn(a,y)

mell({pa,p1)

/y w(de,dy) = pole) = dpo(x); [ w(de,dy) = pi(y) dy = dus(y).

Ui

Define

(Wasserstein p distance)

For p = 2, Wy = +/J = \/J5 are three formulations (Monge, Kantorovich,

Benamou-Brenier) are equivalent.

There are formulations on discrete spaces. Typically on graphs use W;. For
images (especially dynamics) use Wy,
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Algorithm for Optimal Transport Quadratic Case (AHT)

1. Start with any mass preserving map u : {dg — 2y, uppg = 1.

2. Consider mappings of the form @ = wo s ! where s : Qy — Q is
diffeomorphism and sz pp = po.

3. Using Helmholtz decomposition we can write
uw=Vw+C(.

Idea 1s to define one parameter family s(¢, x) to kill the curl. Optimum
then 1s gradient of function.

4. Via calculus of vanations, following gradient flow does this:

Ty = —iw(ﬁ, — VAV . 1),
Ho

First order mtegro-differential equation.

o

Optimal s, gives u = Vwyy 0 . This 1s polar factorization.



Optimal Mass Transport-Geodesic

Geodesic in the 2-Wasserstein space Geodesic in the Euclidean space
Ii(z) = det(D fi(z)) 1 (fe(z)) Ii(z) = (1 — t)Io(x) + tI1 ()

t=0 t=020 t=05 =070 t=1 t=0 t=025 t=058 t=070 t=1

e A

A=
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Numerous Applications of OMT

A Image/signal processing, machine learning, computational
fluid dynamics, meteorology, control, complex networks,
data fusion, econometrics,

>

Lei Zhu, Yan Yang, Steven Haker, and Al |l en Tannenbaum, AAn | mage Morphing Technique Based
IEEE Image Processing, volume 16, pp. 1481-1495, 2010. DOI: 10.1109/T1P.2010.896637



Glymphatic System




Texture Mapping
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Interpolation and Prediction: TBI
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Motivation: Cancer Network as Robust System

Figure : Feedback loops for hypoxia responses of tumor cells #

@ How to quantitatively measure the robustness?

A% | ol E e i
Kitano, Cancer as a robust system: implications for anticancer therapy,
Nature Reviews Cancer, 2004 o = =
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Robustness & Fragility

Network Robustness & Fragility: || GRAPH THEORY /

A If node/edge x is perturbed, how does the network & O
react to such a change. A highly robust network Bdom ing  d-eguiar(4)
continues to operate in a similar manner with Whikch:le handect foDeing: down
respect to its functionality. Il. SUPPLY CHAIN AND FINANCIAL NETWORKS - CRISIS

Quantitively: ‘

A Consider a network perturbation (fluctuation) that will T o

LS
VERRILL LYNCH

result in a deviation of an observable from its
unperturbed value. How quickly will this return to
equilibrium (e.g., decay rate)?

vvvvvvvvv

\\\\\\\\\\\\\

DoD Supply Chain [2] 2008 Financial Crisis [3]

. . (risk propagates through primes and subs) (small/large banks - risk exposure)
+  Letp,(t)denote the probability that the mean deviates
by more than €at time t (with p,(t)- Oas t- =), then IIl. BIOLOGICAL NETWORKS - CANCER
o AS x AR>0 ARicx AR >0

|Im§¥|0gpe(t)c »%»%

measures the decay rate [1].

Robust (Cancer) State Nodal Robustness Interaction Robustness
; . . (Multiple Signaling Pathways) (Dynamic Entropy, Scalar Curvature) (Ricel Curvature)
A Robustness is measured as the ability to withstand
. . . . Drug Targets? Drug Targets?
perturbations (noise) or stochastic fluctuations to a ’ ’ m '

network yet still allow for “informationtobepas sed 6 0
in a reliable manner.

[1] Albert, R. et al. Statistical mechanics of complex networks. Reviews of Modern Physics. 74, 47 (2002). Fragile (Normal) State “Knock Down” Genes “Knock-Down" Interactions
[2] http:// about.bgov.com /bgov200/bgov -analysis/competition -cooperation -among -defense -contractors -bgov -insight/ ~ (Fewer Signaling Pathways) (Nodes May Participate in Both (Target interactions at the local level -
Robustness and Fragility) there exists no “loss of information”)

[3] Battiston , S. et al. DebtRank : Too Central to Fail? Financial Networks, the FED and Systemic Risk. Scientific Reports 2 (2012).



Wasserstein Distance: Discrete

Wasserstein 1-Metric:

Let €, and €, now be two discrete distributions with same total mass over n points, respectively, and let d(x,y)
represent the distance between such samples (for the case of graphs, this is simply taken to be the hop
distance). Then, W,( g €,) may be described as follows:

W(m @=mind d(x,x) @ X)

ij=1

where /1{X, Y)is a coupling (or flow) subject to the following constraints:

o, y) > 0,
>l yy) = plx), Vo,

X prny) = pa(y). V.

The cost above finds the optimal coupl jtrogwgotfh moivn inda la

[4] Rubner, Y et. al . The earth mover6s distance as a metric for image retrieval. I nternational Journa



Generalities on Riccl Curvature

Curvature:

A Curvature, in the broad sense, is a measure by which a geometrical object deviates from being flat, and
is defined in varying manners given context [5].

Sectional Curvature;

A For M an n-dimensional Riemannian manifold, x M, let T,Mdenote the tangent space at x, and uy,u, "
T.M orthonormal vectors. Then for geodesics 2i(t) := exp(tu;), i = 1,2, the sectional curvature K(uy,u,)
measures the deviation of geodesics relative to Euclidean geometry, i.e.,

d(g(t).g(t) = \/Etgi- %tz +0(t4)g

Ricci Curvature:

A The Ricci curvature is the average sectional curvature. Namely, given a (unit) vector u ¥ TM, we
complete it to an orthonormal basis u,u,,...,u,. Then the Ricci curvature is defined by

: 1 o
Ric(u):=——a K(uy)
n-1 i=2
Where we note there might be several scaling factors and it may be extended to the quadratic form, yielding
the so-called Ricci curvature tensor. Ricci curvature is also strongly related to the Laplace-Beltrami operator
and in geodesic normal coordinates, we have

R =-3/2Dg,

where g; denotes the metric tensor on M.

[5] DoCarmo, M. Riemannian Geometry (Birkhauser, 1992).



Generalities on Ricci Curvature

Ri cci Curvature (conot):

A We can alternatively describe Ricci curvature as the spreading of geodesics. Let 2 denote a geodesic
and 2,a smooth one parameter family of geodesics with 9,= 2. Then a Jacobi field may be defined as

a) :% B

It may be regarded as an infinitesimal deformation of the given geodesic.
Then it is standard that J(t) (essentially the Jacobian of the exponential map)

satisfies the Jacobi equation:
2

D o =
? J(t) + R(‘](t) ’ )/(t)))/(t) = O’ Curvature in Terms of Jacobian

Wheregdenotes covariant derivative, and R is the Riemann curvature tensor.

Discrete Spaces:

A We want to extend these notions to discrete graphs and networks - ordinary differentiability does not
apply. A nice argument (due to Villani)[6] approaches this problem through convexity. More precisely, let f:
RMY R. Then if f is C2, convexity may be characterized asE)Zf(X)Z Ofor all x. One may also define
convexity in a synthetic manner:

f((1- t)x+ty) £ (- t)f(X)+tf(y)

Following this, one may define a synthetic notion of Ricci curvature in terms of so-called displacement
convexity inherited from the Wasserstein geometry on probability measures.

[6] Lott, J. & Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics. 169, 903-991 (2009).



Explaining Curvature to Boltzmann

e Displacement convexity /concavity

S(H-r) = tS(‘uﬂ) 4 (]_ . r)S(ﬂ'l) n Kt(] _ t)
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Figure : The lazy gas experiment. ©

E1Iu"ill.;mi. Optimal Transport. Old and Mew. 2008.



Ricci Curvature and Entropy

Lott, Sturm, and Villani:

Let (X,d,m) denote a geodesic space, and set:

P(X.d,m) = {uz(}:fudmzl},
X
P*(X.d,m) = {uePX,d,m):lim plogpdm < oo}
eNO0Ju>e

We define

_11m/ nlogudm, for u € P*(X,d,m),
e\0

Which is the negative of the Boltzmann entropy Se( €:F -H( § hote concavity of Seis equivalent to the
convexity of H. Then we say that X has Ricci curvature bounded from below by k if for every m, m1 P(X)
there exists a constant speed geodesic €t with respect to the Wasserstein 2-metric connecting €gand €,

such that
S.(m)? 1§(m) +(1- t)Se(nz)+kt(1 )

This indicates the positive correlation of entropy and curvature that we will express as

DS.3 DRc2 0

W(m,m)°?, O0£t£1

We now need to connect Ricci curvature and entropy to the notion of robustness (next slide) as well as
define appropriate notions of curvature/entropy for discrete spaces (graphs).

[6] Lott, J. & Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics. 169, 903-991 (2009).



Curvature and Robustness

Recall Definition of Robustness:

A If we let pe(t)denote the probability that the mean deviates by more than €at time t (with p,(t)- Oas {- ),
then 2 ~

.oal C
R:=lima =log p,(t)¢
measures the decay rate. t-a Q t -

Fluctuation Theorem:

A In thermodynamics, it is well-known that entropy and rate functions from large deviations are closely related.
The Fluctuation Theorem is a realization of this fact for networks and can be expressed as:
DS,2 DR2 0
This can now be further extended to be
DRicd DR2 0.
A The Fluctuation Theorem has consequences for just about any type of network: biological , communication
social , or neural . In rough terms, it means that the ability of a network to maintain its functionality in the face of

perturbations (internal or external), can be quantified by the correlation of activities of various elements that
comprise the network.

Network Entropy & Curvature:
Given a Markov chain , m=( ), & Ay) 4,
y

Network Entr_opy céan be defined as
S=apS(x S(¥=a m(ylog 7y

. - L y
A~ We now need an aprroprlate definition of Ricci curvature for a network.



Ollivier-Ricci Curvature

Motivation:

A We employ the notion of Ollivier-Ricci curvature motivated by adopting coarse geometric properties [7]

A Two very close points x and y with tangent vectors w and i
wNiin which wNis obtained by a parallel transport of w, the e
two geodesics will get closer if the curvature is positive. s,

A Distance between two small (geodesic balls) is less than

the distance of their centers. Ricci curvature along dix,y)

direction x-y reflects this, averaged on all directions w at

X Pictorial Motivation for Ollivier Ricci Curvature
Definition:

Formally, we define for (X,d) a metric spaxeXlegpui ppe
Ollivier-Ricci curvature k(x, y)along the geodesic connecting x and y via

W(m, m)=(1- k(X y))d(xy)

where W, denotes the Wasserstein 1-metric defined previously and d(x,y) is the geodesic (hop) distance on
a graph. For the case of weighted graphs, we set

dX:éWXy

y

W

—_ X
m(y): R

X
and the sum is taken over all neighbors of x where w,, denotes the weight of an edge connecting x and y (it

is taken as zero if there is no connecting edge between x and y). The measure g, may be regarded as the
distribution of a one-step random walk starting from x.

[7] Ollivier, Y. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris. 345, 643 -646 (2007)



Curvature: Cancer Hallmark?

Is Curvature a Cancer Hallmark?: Analysis



