Probabilistic Operator Algebra Seminar Organizer: Dan-Virgil Voiculescu ## February 13 Kristin Courtney, University of Southern Denmark Odense Title: Nuclear C^* -algebras and generalized inductive limits Inductive limits are a central construction in operator algebras because they allow one to construct complicated objects with tractable properties using well-understood building blocks, such as finite-dimensional C^* -algebras. In the classical setting, the only C^* -algebras that arise as inductive limits of finite-dimensional C^* -algebras. In order to realize a broader class of nuclear C^* -algebras as inductive limits of finite-dimensional C^* -algebras, Blackadar and Kirchberg introduced a more generalized notion of inductive systems of C^* -algebras. In their 1997 article, they showed that a separable C^* -algebra is nuclear and quasidiagonal if and only if it is a generalized inductive limit of finite-dimensional C^* -algebras (called an NF algebra). By introducing more flexibility into their systems and limits, one can achieve a similar characterization for all separable nuclear C^* -algebras. In this talk, I will discuss their generalized inductive systems and the recently introduced C^* -encoding and CPC*-systems. The structure encoded by these systems is quite natural, and these systems directly correspond to completely positive approximations of nuclear C^* -algebras. This is based on joint work with Wilhelm Winter.