Math 55 Section Worksheet GSI: Jeremy Meza Office Hours: Wed 10am-12pm, Evans 775 March 7, 2018

1 Warm-Up

- (a) How many ways can I give 3 distinct candies to 5 children? (some children may receive none and some may receive more than 1)
- (b) How many ways can I give 3 distinct candies to 5 children if no child is allowed more than 1 candy?
- (c) How many ways can I give 3 indistinguishable candies to 5 children if no child is allowed more than 1 candy?
- (d) How many ways can I give 3 indistinguishable candies to 5 children, if children are allowed more than 1 piece of candy?

2 Let's Count!

- 1. How many ways are there to choose a dozen donuts from the 24 varieties at Kingpin Donuts?
- 2. How many different strings can be made from the letters in MISSISSIPPI, using all the letters?
- 3. How many solutions are there to the equality $x_1 + \ldots + x_k = n$, where $x_i, n \in \mathbb{N}$?
- 4. How many solutions are there to the inequality $x_1 + \ldots + x_k \leq n$?
- 5. A *lattice path to* (a, b) is a walk starting at the origin and ending at (a, b) where at each step you are allowed to move one unit north or one unit east (see 6.4 #33 on your homework).
 - (a) How many lattice paths are there to (2n, 2n)?
 - (b) How many lattice paths are there to (2n, 2n) that go through (n, n)?
- 6. Count the number of 6 card hands dealt from a standard deck of 52 cards that have at least one card in every suit.
- 7. How many ways can n books be placed on k distinguishable shelves
 - (a) if the books are indistinguishable copies of the same title?
 - (b) if no two books are the same, and the positions of the books on the shelves matter?

3 Bonus

The following is called the *twelvefold way* in combinatorics. Let X, N be finite sets of size x, n, respectively. Below, "in/distinguishable" means that the elements of the set either can or cannot be distinguished from each other. They are still distinct elements, there just might not be a difference between them. (think k different-brand candies versus k candies all of the same brand). Try to fill out the marked entries of the table:

	# of $f: N \to X$	# of injective $f: N \to X$	$\#$ of surjective $f: N \to X$
N distinguishable	(a)	(b)	
X distinguishable			
N indistinguishable	(c)	(d)	(e)
X distinguishable			
N distinguishable		(f)	
X indistinguishable			
N indistinguishable		(g)	
X indistinguishable			

Bonus: Try to fill out the remainder of the table.