Math 55 Section Worksheet
GSI: Jeremy Meza

Office Hours: Wed 10am-12pm, Evans 775
February 28, 2018

1 Warm-up

Try to recall the following concepts without looking at your notes:
Sum Rule Product Rule Inclusion-Exclusion Pigeonhole Principle

2 Problems

1. What is wrong with this "proof" by strong induction?
"Theorem" For every nonnegative integer $n, 5 n=0$.
Base Case: 5•0=0.
Inductive Step: Suppose that $5 j=0$ for all nonnegative integers j with $0 \leq j \leq k$. Write $k+1=i+j$, where i and j are natural numbers less than $k+1$. By the inductive hypothesis, $5(k+1)=5(i+j)=5 i+5 j=0+0=0$.
2. Suppose you begin with a pile of n stones and split this pile into n piles of one stone each by successively splitting a pile of stones into two smaller piles. Each time you split a pile you multiply the number of stones in each of the two smaller piles you form, so that if these piles have r and s stones in them, respectively, you compute rs. Show that no matter how you split the piles, the sum of the products computed at each step equals $n(n-1) / 2$.
3. Prove that $2^{n}>(n+1)^{2}$ for all $n \in \mathbb{N}$ with $n \geq 6$.
4. Give a recursive definition of $P_{m}(n)$, the product of the integer m and the nonnegative integer n.
5. How many different three-letter initials can people have?
6. How many different three-letter initials with none of the letters repeated can people have?
7. How many positive integers not exceeding 100 are divisible either by 4 or by 6 ?
8. Let $n \in \mathbb{N}$ and suppose we have a set $S \subseteq[2 n]$ of size $|S|=n+1$. Prove that there must be two elements $x, y \in S$ that are relatively prime.
