Math 55 Section Worksheet GSI: Jeremy Meza Office Hours: Wed 10am-12pm, Evans 775 February 26, 2018

1 Warm-up

- 1. What is the difference between Induction and Strong Induction?
- 2. What is the Well-Ordering Property?

2 Problems

1. Prove that for all $n \in \mathbb{N}$ with $n \ge 1$,

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be such that f(xy) = xf(y) + yf(x). Prove that for all $u \in \mathbb{R} \{0\}$ and all $n \in \mathbb{N} \{0, 1\}$, $f(u^n) = nu^{n-1}f(u)$.
- 3. Consider the Fibonacci sequence f_n defined by setting $f_0 = 0, f_1 = 1$ and for $n \ge 2, f_n = f_{n-1} + f_{n-2}$. Prove the following:
 - (a) $\sum_{i=0}^{n} f_i = f_{n+2} 1$
 - (b) $\sum_{i=0}^{n} f_i^2 = f_n \cdot f_{n+1}$
 - (c) $f_{n-1} \cdot f_{n+1} f_n^2 = (-1)^n$
- 4. Prove that $n^3 + 2n$ is divisible by 3 for all integers n.
- 5. Which amounts of money can be formed using just two-dollar bills and five-dollar bills?
- 6. Prove that a convex *n*-gon has n(n-3)/2 diagonals.