Math 55 Section Worksheet

GSI: Jeremy Meza
Office Hours: Wed 10am-12pm, Evans 775
February 26, 2018

1 Warm-up

1. What is the difference between Induction and Strong Induction?
2. What is the Well-Ordering Property?

2 Problems

1. Prove that for all $n \in \mathbb{N}$ with $n \geq 1$,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f(x y)=x f(y)+y f(x)$. Prove that for all $u \in \mathbb{R}-\{0\}$ and all $n \in \mathbb{N}-\{0,1\}, f\left(u^{n}\right)=n u^{n-1} f(u)$.
3. Consider the Fibonacci sequence f_{n} defined by setting $f_{0}=0, f_{1}=1$ and for $n \geq 2, f_{n}=f_{n-1}+f_{n-2}$. Prove the following:
(a) $\sum_{i=0}^{n} f_{i}=f_{n+2}-1$
(b) $\sum_{i=0}^{n} f_{i}^{2}=f_{n} \cdot f_{n+1}$
(c) $f_{n-1} \cdot f_{n+1}-f_{n}^{2}=(-1)^{n}$
4. Prove that $n^{3}+2 n$ is divisible by 3 for all integers n.
5. Which amounts of money can be formed using just two-dollar bills and five-dollar bills?
6. Prove that a convex n-gon has $n(n-3) / 2$ diagonals.
