Math 55 Section Worksheet
 GSI: Jeremy Meza
 Office Hours: Wed 10-12pm, Evans 775
 February 12, 2018

1 Questions

Think of questions to ask!

2 Midterm Review

1. Let A, B be sets and P, Q, R propositions. Negate the following proposition:

$$
\exists x \in A \forall y \in B \forall z \in A, P(x, y, z) \rightarrow(Q(z) \wedge R(x))
$$

2. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(x)=2 x-3$. Let $g: \mathbb{Z} \rightarrow \mathbb{N}$ be defined by $g(x)=|x|+4$. What is the domain of $g \circ f$? What is the codomain? Is this function injective? Surjective?
3. Let \mathbb{R} be the universe and $P(x, y)$ be the statement $x+y \in \mathbb{Q}$. Determine the truth values of the following statements:
(a) $\forall x \in \overline{\mathbb{Q}} \exists y \in \overline{\mathbb{Q}} P(x, y)$
(b) $\exists x \in \overline{\mathbb{Q}} \forall y \in \overline{\mathbb{Q}} P(x, y)$
4. Evaluate $\left(3^{99}+6^{4}\right) \bmod 8$.
5. Is $\{2, \varnothing\} \subseteq \mathcal{P}(\mathbb{Z} \cup\{\varnothing\})$?
6. Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be defined by $f(x, y)=2^{x-1}(2 y-1)$. Prove that f is injective.
7. Let $a, b, c \in \mathbb{Z}$ such that $a^{2}+b^{2}=c^{2}$. Prove that at least one of a, b is even. (Hint: Look at $\left.c^{2} \bmod 4\right)$.
