Math 55 Section Worksheet GSI: Jeremy Meza Office Hours: Wed 10-12pm, Evans 775 February 5, 2018

1 Warm-up

- 1. What is the definition of countable?
- 2. What is the definition of $a \mid b$?
- 3. What is the definition of $a \equiv b \pmod{m}$?
- 4. Evaluate $-23 \pmod{4}$.
- 5. True or False: If $a \mid (mn)$ then either $a \mid m$ or $a \mid n$.

2 Problems

- 1. Let S be the set of all infinite binary strings (that is, elements of S are infinitely long strings of 0s and 1s). Provide a bijection between S and $\mathcal{P}(N)$.
- Let [n] denote the set {1,...,n}. Let A be the set of subsets of [n] that have even size and B be the set of subsets of [n] that have odd size. Establish a bijection between A and B.
- 3. Let $a, b, c \in \mathbb{Z}$. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.
- 4. What is the base 5 expansion of 154?

3 Extra

- 5. Prove $\mathbb{N}\times\mathbb{N}$ is countable. Hint: draw a diagram.
- 6. Let $a, b, c \in \mathbb{Z}$ such that $a^2 + b^2 = c^2$. Prove that at least one of a, b is even. (Hint: Look at $c \mod 4$ and mod 2).
- 7. Let A be a palindromic positive integer with an even number of digits. For example, A could be 403,304. Prove that A is divisible by 11. (Hint: write A out in base 10 expansion).
- 8. Let A, B be countable sets.
 - (a) Prove that if $A \cap B = \emptyset$, then $A \cup B$ is countable.
 - (b) Prove in general that $A \cup B$ is countable.

- 9. What do you think are the cardinalities of the following sets?
 - (a) The set of all infinite binary strings.
 - (b) The set of all infinite binary strings with only *finitely* many 1s.
 - (c) The set of functions from \mathbb{N} to \mathbb{N} .
 - (d) The set of functions from \mathbb{N} to $\{1,2\}$.
 - (e) $\bigcup_{n \in \mathbb{N}} \{0, 1, \dots, n\}.$
 - (f) $\bigcup_{x \in \mathbb{R}} \{x\}.$
 - (g) The rational numbers.
 - (h) The irrational numbers.
 - (i) $\mathbb{N} \times \mathbb{Z} \times \mathbb{Q}$.
 - (j) $\mathcal{P}(\mathbb{N})$.
 - (k) $\mathcal{P}(\mathbb{R})$.
 - (l) $\mathcal{P}(\mathcal{P}(\mathbb{N}))$.
 - (m) The number of different cardinalities.
 - (n) The number of bijections from [n] to itself.
 - (o) C
 - (p) Any set that contains an uncountable set.
 - (q) Any set contained in a countable set.
 - (r) Any set that has a surjection onto an uncountable set.
 - (s) Any set that has an injection into a countable set.
 - (t) All the grains of sand in the world.
 - (u) All the quarks in all the protons in all nuclei in all the atoms in all the particles in all of the universe.
 - (v) A basis of \mathbb{R} as a vector space over \mathbb{Q} .
 - (w) The set of all polynomials with integer coefficients.
 - (x) The set of algebraic numbers.
 - (y) The set of transcendental numbers.
 - (z) The set of computable numbers.