Math 55 Section Worksheet
GSI: Jeremy Meza
Office Hours: Wed 10am-12pm, Evans 775
April 18, 2018

1 Warm-Up

Try to recall the following concepts without looking at your notes.

| graph | directed graph | degree | "Handshaking" Theorem |
| :---: | :---: | :---: | :---: | :---: |
| complete graph | cycle graph | bipartite graph | adjacency matrix |

2 Problems

1. How many vertices and edges are in the following graphs:
(a) The complete graph K_{n}.
(b) The cycle graph C_{n}.
(c) The wheel graph W_{n}.
(d) The n-cube Q_{n}.
2. For which values of n are the following graphs bipartite?
(a) The complete graph K_{n}.
(b) The cycle graph C_{n}.
(c) The wheel graph W_{n}.
(d) The n-cube Q_{n}.
3. Think of questions to ask!

3 Challenge

4. A graph is planar if it can be drawn without any edges intersecting (edges don't have to be straight lines). Which of the following graphs do you think are planar?
(a) $K_{3} ? K_{4} ? K_{5}$?
(b) $K_{2,2} ? K_{3,3}$?
5. The Ramsey number $R(r, s)$ is the minimum number of vertices n such that no matter how we color the edges of the complete graph K_{n} with colors red and blue, there is always either a red K_{r} or a blue K_{s}. For example, we have shown previously that $R(3,3)=6$. (Why?)
Easy: Show that $R(2, s)=s$.
Hard: Show that $R(4,3) \leq 10$.
Harder: Show that $R(r, s) \leq R(r-1, s)+R(r, s-1)$ (Hint: consider the complete graph on $N=R(r-1, s)+R(r, s-1)$ vertices. Do a similar pigeonhole argument.)
