Math 55 Section Worksheet GSI: Jeremy Meza Office Hours: Wed 10am-12pm, Evans 775 April 18, 2018

1 Warm-Up

Try to recall the following concepts without looking at your notes.

graph	directed graph	degree	"Hands	haking" Theorem
complete grap	h cycle graph	bipartit	e graph	adjacency matrix

2 Problems

- 1. How many vertices and edges are in the following graphs:
 - (a) The complete graph K_n .
 - (b) The cycle graph C_n .
 - (c) The wheel graph W_n .
 - (d) The *n*-cube Q_n .
- 2. For which values of n are the following graphs bipartite?
 - (a) The complete graph K_n .
 - (b) The cycle graph C_n .
 - (c) The wheel graph W_n .
 - (d) The *n*-cube Q_n .
- 3. Think of questions to ask!

3 Challenge

4. A graph is *planar* if it can be drawn without any edges intersecting (edges don't have to be straight lines). Which of the following graphs do you think are planar?

(a) K_3 ? K_4 ? K_5 ? (b) $K_{2,2}$? $K_{3,3}$?

5. The Ramsey number R(r,s) is the minimum number of vertices n such that no matter how we color the edges of the complete graph K_n with colors red and blue, there is always either a red K_r or a blue K_s . For example, we have shown previously that R(3,3) = 6. (Why?)

Easy: Show that R(2, s) = s.

Hard: Show that $R(4,3) \leq 10$.

Harder: Show that $R(r,s) \leq R(r-1,s) + R(r,s-1)$ (Hint: consider the complete graph on N = R(r-1,s) + R(r,s-1) vertices. Do a similar pigeonhole argument.)