Math 55 Section Worksheet GSI: Jeremy Meza Office Hours: Wed 10am-12pm, Evans 775 April 16, 2018

1 Warm-Up

- (a) What is a *binary relation*? What does it mean to be reflexive, symmetric, antisymmetric, and transitive?
- (b) What is the \mathcal{P} -closure of a relation?
- (c) What is an equivalence relation? What is an equivalence class?

2 Problems

- 1. Let R be an equivalence relation on a set A. If aRb, prove that [a] = [b].
- 2. Consider the relation on $\mathbb{R} \times \mathbb{R}$ given by

$$(a,b) \operatorname{R} (c,d) \iff a = c$$

Is this an equivalence relation? What are the equivalence classes? Try to visualize it on the plane. Do the equivalence classes partition $\mathbb{R} \times \mathbb{R}$?

- 3. Let R be a relation on A. Prove by induction that there is a path of length n, where $n \in \mathbb{Z}^+$, from a to b iff $(a, b) \in \mathbb{R}^n$. (Recall \mathbb{R}^n is the composite relation of R with itself, n times.)
- 4. Define a relation R on $\mathbb{N} \times \mathbb{N}$ by

$$(a,b) \operatorname{R} (c,d) \iff a-b=c-d$$

Prove that R is an equivalence relation. What do you think are the equivalence classes?

5. Define a relation R on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ by the following:

 $(a,b) \operatorname{R} (c,d) \iff ad = bc$

Prove that R is an equivalence relation. What do you think are the equivalence classes?

- 6. Let $S = \{(x_1, \ldots, x_k) \subseteq [n]^k \mid \forall i \neq j, x_i \neq x_j\}$. Define a relation R on S by (x_1, \ldots, x_k) R (y_1, \ldots, y_k) iff (y_1, \ldots, y_k) is some permutation of (x_1, \ldots, x_k) .
 - (a) Prove that R is an equivalence relation.
 - (b) For $(x_1, \ldots, x_k) \in S$, what is the size of $[(x_1, \ldots, x_k)]$?
 - (c) How many equivalence classes are there?
 - (d) What is the size of S?