# Math 55 Section Worksheet <br> GSI: Jeremy Meza 

Office Hours: Wed 10am-12pm, Evans 775
April 4, 2018

## 1 Warm-Up

Try to recall the following concepts without looking at your notes.
binary relation reflexive relation transitive relation directed graph symmetric relation antisymmetric relation composite relation

## 2 Problems

1. Define the relation $R$ on $\mathbb{Z}$ by $(x, y) \in R \Longleftrightarrow 3 \mid x-y$.
(a) Prove that $R$ is reflexive.
(b) Prove that $R$ is symmetric.
(c) Prove that $R$ is transitive.
2. Give an example of a relation on a set that is
(a) both symmetric and antisymmetric.
(b) neither symmetric nor antisymmetric.
3. Let $R, S$ be the relations represented by the matrices

$$
M_{R}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \quad M_{S}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Find the matrix that represents the composite relation $R \circ S$. Draw the directed graphs for $R, S$, and $R \circ S$.
4. Let $n \in \mathbb{N}$. Consider the function $\varphi:[n] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by

$$
\varphi\left(a,\left(x_{1}, \ldots x_{n}\right)\right)=\left(x_{n-a+1}, \ldots, x_{n}, x_{1}, x_{2}, \ldots x_{n-a}\right)
$$

(a) In words, describe what $\varphi$ does to the ordered list $\left(x_{1}, \ldots x_{n}\right)$.
(b) Define a relation $R$ on $\mathbb{R}^{n}$ by

$$
(x, y) \in R \Longleftrightarrow \exists a \in[n], \varphi(a, x)=y
$$

Prove that $R$ is reflexive, symmetric, and transitive.

## 3 Challenge

5. How many relations are there on a set with $n$ elements that are
(a) symmetric?
(b) reflexive?
(c) reflexive and symmetric?
(d) antisymmetric?
(e) asymmetric?
