Math 55 Section Worksheet
GSI: Jeremy Meza
Office Hours: Wed 10am-12pm, Evans 775
April 2, 2018

1 Welcome Back

Question: How do you solve a recurrence relation? Think of some ways you have gone over in lecture.

Question: What is Inclusion-Exclusion? Explain it in words and then try to write down the statement. Look at your notes and recall how you counted the number of derangements of $[n]$.

2 Together

Using generating functions, we will solve the recurrence relation $a_{k}=5 a_{k-1}-$ $6 a_{k-2}$ with initial conditions $a_{0}=6$ and $a_{1}=30$. Before we do, let's review generating functions:

Find a closed form for the generating function for the sequences $\left\{a_{n}\right\}$ given below

1. $a_{n}=5$ for $n \geq 0$
2. $a_{n}=5$ for $n \geq 3$ and $a_{0}=a_{1}=a_{2}=0$.
3. $a_{n}=5^{n}$ for $n \geq 0$.
4. $a_{n}=\binom{5}{n}$ for $n \geq 0$.
5. $a_{n}=5 n+3$ for $n \geq 0$.

3 You Try!

1. Use generating functions to solve the recurrence relation $a_{k}=3 a_{k-1}+2$ with the initial condition $a_{0}=1$.
2. Count the number of surjective functions $f:[5] \rightarrow[3]$.
3. Find the number of natural numbers from 1 to 1000 that are neither perfect squares, cubes, nor fourth powers.
4. Suppose that p and q are distinct primes. Use the principle of inclusionexclusion to find $\varphi(p q)$, the number of positive integers not exceeding $p q$ that are relatively prime to $p q$. Can you generalize this formula to $\varphi(n)$ where $n=p_{1}^{a_{1}} \cdots p_{t}^{a_{t}}$?
5. Let $A=\{1\}$. Let's count the number of elements of $A \backslash A=\varnothing$ in a rather convoluted way. For $1 \leq i \leq n$, let $A_{i}=\{1\}$ and note then that $A=A_{1} \cup \ldots \cup A_{n}$. Thus, $0=|\varnothing|=|A|-|A|=1-\left|A_{1} \cup \ldots \cup A_{n}\right|$. Deduce that

$$
0=1-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}-\ldots+(-1)^{n}\binom{n}{n}
$$

Can you prove this identity in any other ways? Binomial Theorem? Combinatorially? Induction?
6. Use generating functions to prove the following identities:

$$
\begin{gathered}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \\
\binom{m+n}{k}=\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i}
\end{gathered}
$$

(Hint: look at
$(1+x)^{n}=(1+x)^{n-1}+x(1+x)^{n-1} \quad$ and $\quad(1+x)^{m+n}=(1+x)^{m}(1+x)^{n}$ respectively.)

4 Challenge

7. Find a generating function for the number of ways to make n dollars with denominations of $\$ 1, \$ 2, \$ 5$, and $\$ 10$ bills. (Hint: Do it for just $\$ 1$, then just $\$ 2$, and so forth. Now what operation should you do?)
8. The Catalan numbers C_{n} are given by the recurrence $C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}$ with initial conditions $C_{0}=C_{1}=1$. (see Challenge problems on last weeks worksheet).
(a) If $C(x)$ is the generating function for C_{n}, show that $x C(x)^{2}-C(x)+$ $1=0$.
(b) Using the initial conditions, show that $C(x)=\frac{1-\sqrt{1-4 x}}{2 x}$.
(c) For any real number x, define $\binom{x}{n}:=\frac{x(x-1) \cdots(x-n+1)}{n(n-1) \cdots 1}$. Show that if n is a positive integer, then

$$
\binom{-1 / 2}{n}=\frac{\binom{2 n}{n}}{(-4)^{n}}
$$

(d) Use the preceding exercises and the binomial theorem to show that

$$
C(x)=\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{n}
$$

and hence $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.

