# Math 55 Section Worksheet <br> GSI: Jeremy Meza 

Office Hours: Wed 10am-12pm, Evans 775
March 21, 2018

## 1 Warm-Up

(a) What is a recurrence relation?
(b) What is a linear homogenous recurrence relation of degree $k$ ?
(c) What is a characteristic equation? How can we use it to find a solution to a recurrence relation?

## 2 Problems

1. (a) Find a recurrence relation for the number of bit strings of length $n$ that contain a pair of consecutive 0 's.
(b) What are the initial conditions?
(c) How many bit strings of length 5 contain two consecutive 0s?
2. Solve the recurrence relation $a_{n}=5 a_{n-1}-6 a_{n-2}$ for $n \geq 2$ with initial conditions $a_{0}=1, a_{1}=0$.
3. Solve the recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}$ for $n \geq 2$ with initial conditions $a_{0}=6, a_{1}=8$.
4. In how many ways can a $2 \times n$ rectangular checkerboard be tiled using $1 \times 2$ and $2 \times 2$ pieces?
5. Let $S(n, k)$ denote the number of ways to partition the set $\{1, \ldots, n\}$ into $k$ nonempty subsets. For example, $S(3,2)=3$ because we have the partitions $\{\{1\},\{2,3\}\},\{\{2\},\{1,3\}\}$, and $\{\{3\},\{1,2\}\}$. We set the initial conditions $S(0,0)=1$ and $S(n, 0)=S(0, n)=0$ for $n>0$. Find a recurrence relation for $S(n, k)$.
6. Let $p_{n}$ be the number of ways to group $2 n$ distinct people into pairs.
(a) Find a recursive formula for $p_{n}$.
(b) Give a combinatorial argument to show that $p_{n}=\frac{(2 n)!}{n!2^{n}}$.

## 3 Challenge

7. A triangulation of a convex polygon is a decomposition of the polygon into triangles by connecting vertices with non-crossing line segments. Below are the triangulations of a hexagon:


Figure 1: $C_{4}=14$ triangulations of a hexagon.
(a) Let $C_{0}=1$ and for $n \geq 1$, let $C_{n}$ be the number of triangulations of an $(n+2)$-gon. Show that $C_{n}$ is given by the following recursive formula:

$$
C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}
$$

(b) Let $C_{0}^{\prime}=1$ and for $n \geq 1$, let $C_{n}^{\prime}$ be the number of lattice paths to $(n, n)$ that do not go below the main diagonal $y=x$. Show that $C_{n}^{\prime}=$ $C_{n}$ by showing that $C_{n}^{\prime}$ satisfies the same recurrence relation above. (Hint: case on when the lattice path first touches the diagonal).
8. (If you know linear algebra). Consider the Fibonacci sequence $F_{n}$. We can write this as

$$
\binom{F_{n}}{F_{n-1}}=A\binom{F_{n-1}}{F_{n-2}} \quad \text { with } \quad A=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)
$$

(a) Prove that $\binom{F_{n}}{F_{n-1}}=A^{n-1}\binom{F_{1}}{F_{0}}$.
(b) Calculate $A^{n-1}$ by diagonalizing $A$.
(c) Derive Binet's formula for $F_{n}$ :

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

9. Recall the definition of $S(n, k)$ in problem 5 .
(a) Use $S(n, k)$ to count the number of surjective functions $f:[n] \rightarrow[k]$.
(b) Let $(x)_{k}$ denote the falling factorial $(x)_{k}:=x(x-1)(x-2) \cdots(x-k+1)$. By counting the total number of functions $f:[n] \rightarrow[x]$ in 2 ways, deduce the equality

$$
x^{n}=\sum_{k=0}^{n} S(n, k)(x)_{k}
$$

