Math 55 Section Worksheet
GSI: Jeremy Meza
Office Hours: Wed 10-12pm, Evans 775
January 31, 2018

1 Warm-up

1. What does it mean for a function to be well-defined?
2. What does it mean for a function to be injective (one-to-one)?
3. What does it mean for a function to be surjective (onto)?
4. What is the definition of countable?

2 Problems

1. Let $f: A \rightarrow B$ be a function. Let $S, T \subseteq A$. For each of the following, prove it must hold or provide a counterexample.
(a) $f(S \cap T) \subseteq f(S) \cap f(T)$
(b) $f(S \cap T) \supseteq f(S) \cap f(T)$
2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing function, that is suppose

$$
\forall x \in \mathbb{R}(x<y \longrightarrow f(x)<f(y))
$$

Prove that f is injective. Can you think of an example where f is not surjective?
3. Give an example of a function $f: \mathcal{P}(\mathbb{N}) \rightarrow \mathbb{N}$ that is surjective.
4. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Suppose $g \circ f$ is injective. Prove that f is injective. If f is injective, is it necessarily true that $g \circ f$ is injective?
5. For a set S and $n \in \mathbb{N}-\{0\}$, we denote S^{n} as the Cartesian product of S with itself n times. Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x, y, z)=(x y, y z)
$$

Is f injective? surjective? Prove your claims.
6. Evaluate the sum $\sum_{j=0}^{8} 3 \cdot 2^{j}$.
7. Let S be the set of all infinite binary strings (that is, elements of S are infinitely long strings of 0 s and 1s). Provide a bijection between S and $\mathcal{P}(N)$.

3 Extra

8. Let $[n]$ denote the set $\{1, \ldots, n\}$. Let A be the set of subsets of [n] that have even size and B be the set of subsets of $[n]$ that have odd size. Establish a bijection between A and B.
9. Let f, g be surjections from \mathbb{Z} to \mathbb{Z} and let $h=f g$ be their product. Must h also be surjective?
10. Let A, B be countable sets.
(a) Prove that if $A \cap B=\varnothing$, then $A \cup B$ is countable.
(b) Prove in general that $A \cup B$ is countable.
11. What do you think are the cardinalities of the following sets?
(a) The set of all infinite binary strings.
(b) The set of all infinite binary strings with only finitely many 1 s.
(c) The set of functions from \mathbb{N} to \mathbb{N}.
(d) The set of functions from \mathbb{N} to $\{1,2\}$.
(e) $\cup_{n \in \mathbb{N}}\{0,1, \ldots, n\}$.
(f) $\cup_{x \in \mathbb{R}}\{x\}$.
(g) The rational numbers.
(h) The irrational numbers.
(i) $\mathbb{N} \times \mathbb{Z} \times \mathbb{Q}$.
(j) $\mathcal{P}(\mathbb{N})$.
(k) $\mathcal{P}(\mathbb{R})$.
(l) \mathbb{C}
(m) A basis of \mathbb{R} as a vector space over \mathbb{Q}.
