Math 55 Section Worksheet GSI: Jeremy Meza Office Hours: Wed 10-12pm, Evans 775 January 31, 2018

1 Warm-up

- 1. What does it mean for a function to be well-defined?
- 2. What does it mean for a function to be injective (one-to-one)?
- 3. What does it mean for a function to be surjective (onto)?
- 4. What is the definition of countable?

2 Problems

- 1. Let $f : A \to B$ be a function. Let $S, T \subseteq A$. For each of the following, prove it must hold or provide a counterexample.
 - (a) $f(S \cap T) \subseteq f(S) \cap f(T)$
 - (b) $f(S \cap T) \supseteq f(S) \cap f(T)$
- 2. Suppose $f : \mathbb{R} \to \mathbb{R}$ is an increasing function, that is suppose

 $\forall x \in \mathbb{R} (x < y \longrightarrow f(x) < f(y))$

Prove that f is injective. Can you think of an example where f is not surjective?

- 3. Give an example of a function $f : \mathcal{P}(\mathbb{N}) \to \mathbb{N}$ that is surjective.
- 4. Let $f : A \to B$ and $g : B \to C$ be functions. Suppose $g \circ f$ is injective. Prove that f is injective. If f is injective, is it necessarily true that $g \circ f$ is injective?
- 5. For a set S and $n \in \mathbb{N} \{0\}$, we denote S^n as the Cartesian product of S with itself n times. Consider the function $f : \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$f(x,y,z) = (xy,yz)$$

Is f injective? surjective? Prove your claims.

- 6. Evaluate the sum $\sum_{j=0}^{8} 3 \cdot 2^{j}$.
- 7. Let S be the set of all infinite binary strings (that is, elements of S are infinitely long strings of 0s and 1s). Provide a bijection between S and $\mathcal{P}(N)$.

3 Extra

- Let [n] denote the set {1,...,n}. Let A be the set of subsets of [n] that have even size and B be the set of subsets of [n] that have odd size. Establish a bijection between A and B.
- 9. Let f, g be surjections from \mathbb{Z} to \mathbb{Z} and let h = fg be their product. Must h also be surjective?
- 10. Let A, B be countable sets.
 - (a) Prove that if $A \cap B = \emptyset$, then $A \cup B$ is countable.
 - (b) Prove in general that $A \cup B$ is countable.
- 11. What do you think are the cardinalities of the following sets?
 - (a) The set of all infinite binary strings.
 - (b) The set of all infinite binary strings with only *finitely* many 1s.
 - (c) The set of functions from \mathbb{N} to \mathbb{N} .
 - (d) The set of functions from \mathbb{N} to $\{1,2\}$.
 - (e) $\bigcup_{n \in \mathbb{N}} \{0, 1, \dots, n\}.$
 - (f) $\bigcup_{x \in \mathbb{R}} \{x\}.$
 - (g) The rational numbers.
 - (h) The irrational numbers.
 - (i) $\mathbb{N} \times \mathbb{Z} \times \mathbb{Q}$.
 - (j) $\mathcal{P}(\mathbb{N})$.
 - (k) $\mathcal{P}(\mathbb{R})$.
 - (l) \mathbb{C}
 - (m) A basis of \mathbb{R} as a vector space over \mathbb{Q} .