Math 55 Worksheet 9

Jeremy Meza

October 9, 2019

1 We Induct Together

1. Prove that $2^{n}+1$ is divisible by 3 for all odd integers n.
2. What is wrong with this "proof"?

Theorem: $\frac{d}{d x} x^{n}=0$ for all $n \geq 0$.
Base Step: $n=0 . \frac{d}{d x} x^{0}=\frac{d}{d x} 1=0$.
Inductive Step: Assume that $\frac{d}{d x} x^{k}=0$ for all $k \leq n$ for some fixed but arbitrary $n \geq 0$. Then, by the product rule,

$$
\frac{d}{d x} x^{n+1}=x^{n} \frac{d}{d x} x^{1}+x^{1} \frac{d}{d x} x^{n}=x^{n} \cdot 0+x^{1} \cdot 0=0
$$

2 You Induct Together

1. Consider the Fibonacci sequence f_{n} defined by setting $f_{0}=0, f_{1}=1$ and for $n \geq 2, f_{n}=f_{n-1}+f_{n-2}$. Prove the following:
(a) $\sum_{i=0}^{n} f_{i}=f_{n+2}-1$
(b) $\sum_{i=0}^{n} f_{i}^{2}=f_{n} \cdot f_{n+1}$
(c) $f_{n-1} \cdot f_{n+1}-f_{n}^{2}=(-1)^{n}$
2. Which amounts of money can be formed using just two-dollar bills and five-dollar bills? Prove your answer using induction.
3. Prove that a convex n-gon has $n(n-3) / 2$ diagonals.
4. Consider a chessboard of size $2^{n} \times 2^{n}$ for some arbitrary natural number n. Remove any square from the board. Is it possible to tile the remaining squares with L-shaped triominoes? (An L-shaped triomino is a tile with 3 squares in the shape of an L.) If so, prove it. If not, provide a counterexample.
5. Let W be the set of balanced strings of parentheses, that is, an element $w \in W$ satisfies one of the following:
(i) w is the string "()".
(ii) $\exists u \in W$ such that w is the string " (u) ".
(iii) $\exists u, v \in W$ such that w is the string " $u v$ ".

For example, " $(()(()))$ " is a balanced string of parentheses. Prove that in any string w, there is the same number of left parentheses as right parentheses. (Hints: first define terms and write what you want to prove using logical symbols. Then induct on the length of the string).

Challenge: Count the number of balanced strings of parentheses of length $2 n$. You can try finding a recursive formula and proving it by induction.

