Math 55 Worksheet 8

Jeremy Meza

October 7, 2019

1 Together

1. Prove that for all $n \in \mathbb{N}$,

$$
\sum_{i=1}^{n}(-1)^{i} i^{2}=(-1)^{n} \frac{n(n+1)}{2}
$$

2. What is wrong with this "proof"?

Theorem: For every positive integer n, if x and y are positive integers with $\max (x, y)=n$, then $x=y$.
Base Step: Suppose that $n=1$. If $\max (x, y)=1$ and x, y are positive integers, then $x=1$ and $y=1$.
Inductive Step: Let k be a positive integer. Assume that whenever $\max (x, y)=k$ and x, y are positive integers, then $x=y$. Now let $\max (x, y)=$ $k+1$ for some positive integers x, y. Then, $\max (x-1, y-1)=k$, so by the inductive hypothesis, $x-1=y-1$. It follows that $x=y$.

2 Induction: You Try!

1. Prove that for all $n \in \mathbb{N}$ with $n \geq 1$,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

2. Define a sequence recursively by $a_{1}=a_{2}=1$ and $a_{n}=a_{n-1}+2 a_{n-2}$. Prove that for every $n \in \mathbb{Z}_{+}, a_{3 n}$ is divisible by 3 .
3. Prove that $n^{3}+2 n$ is divisible by 3 for all integers n.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f(x y)=x f(y)+y f(x)$. Prove that for all $u \in \mathbb{R}-\{0\}$ and all $n \in \mathbb{N}, f\left(u^{n}\right)=n u^{n-1} f(u)$.
5. Consider the Fibonacci sequence f_{n} defined by setting $f_{0}=0, f_{1}=1$ and for $n \geq 2, f_{n}=f_{n-1}+f_{n-2}$. Prove the following:
(a) $\sum_{i=0}^{n} f_{i}=f_{n+2}-1$
(b) $\sum_{i=0}^{n} f_{i}^{2}=f_{n} \cdot f_{n+1}$
(c) $f_{n-1} \cdot f_{n+1}-f_{n}^{2}=(-1)^{n}$
