Math 55 Worksheet 8

Jeremy Meza

October 7, 2019

1 Together

1. Prove that for all $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} (-1)^{i} i^{2} = (-1)^{n} \frac{n(n+1)}{2}$$

2. What is wrong with this "proof"?

Theorem: For every positive integer n, if x and y are positive integers with $\max(x, y) = n$, then x = y.

Base Step: Suppose that n = 1. If $\max(x, y) = 1$ and x, y are positive integers, then x = 1 and y = 1.

Inductive Step: Let k be a positive integer. Assume that whenever $\max(x,y) = k$ and x,y are positive integers, then x = y. Now let $\max(x,y) = k+1$ for some positive integers x,y. Then, $\max(x-1,y-1) = k$, so by the inductive hypothesis, x-1=y-1. It follows that x=y.

2 Induction: You Try!

1. Prove that for all $n \in \mathbb{N}$ with $n \ge 1$,

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

- 2. Define a sequence recursively by $a_1 = a_2 = 1$ and $a_n = a_{n-1} + 2a_{n-2}$. Prove that for every $n \in \mathbb{Z}_+$, a_{3n} is divisible by 3.
- 3. Prove that $n^3 + 2n$ is divisible by 3 for all integers n.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f(xy) = xf(y) + yf(x). Prove that for all $u \in \mathbb{R} \{0\}$ and all $n \in \mathbb{N}$, $f(u^n) = nu^{n-1}f(u)$.
- 5. Consider the Fibonacci sequence f_n defined by setting $f_0 = 0, f_1 = 1$ and for $n \ge 2, f_n = f_{n-1} + f_{n-2}$. Prove the following:
 - (a) $\sum_{i=0}^{n} f_i = f_{n+2} 1$
 - (b) $\sum_{i=0}^{n} f_i^2 = f_n \cdot f_{n+1}$
 - (c) $f_{n-1} \cdot f_{n+1} f_n^2 = (-1)^n$