Math 55 Midterm Review

Jeremy Meza

September 30, 2019

1 Warm-up

- Turn to your neighbors and come up with topics you would like reviewed.
- Read the handout "How to lose marks on math exams".
- Ask a question!

2 Definitions

Give precise mathematical definitions of the following terms. Give counterexamples where necessary so that you truly understand what the term means. How would you start a proof in which you need to show that something satisfies the term?
(a) Subset
(b) Injection
(c) Surjection
(d) Bijection
(e) Countable
(f) gcd
(g) Congruence modulo m

3 Proofs

1. Find a set S such that $\mathcal{P}(S)=\varnothing$ or explain why no such set exists.
2. Let $a, b, c \in \mathbb{Z}$ such that $a^{2}+b^{2}=c^{2}$. Prove that at least one of a, b is even. (Hint: Look at $c^{2} \bmod 4$).
3. Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be defined by $f(x, y)=2^{x-1}(2 y-1)$. Prove that f is injective.
4. Prove that if p is prime, the only solutions of $x^{2} \equiv 1(\bmod p)$ are integers x such that $x \equiv 1(\bmod p)$ or $x \equiv-1(\bmod p)$.
5. Let $f: A \rightarrow B$. Recall that for $S \subseteq B$, we define $f^{-1}(S):=\{x \in A \mid f(x) \in$ $S\}$. Prove or provide a counterexample that $f^{-1}(S \cup T) \subseteq f^{-1}(S) \cup f^{-1}(T)$.
6. Show with the help of Fermat's Little Theorem that if n is a positive integer, then 42 divides $n^{7}-n$ (Hint: Show that 2, 3, 7 divide it).
7. Prove that if m is a positive integer of the form $4 k+3$ for some non-negative integer k, then m is not the sum of the squares of two integers.

4 Computation

8. Let A, B be sets and P, Q, R propositions. Negate the following proposition:

$$
\exists x \in A \forall y \in B \forall z \in A, P(x, y, z) \rightarrow(Q(z) \wedge R(x))
$$

9. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(x)=2 x-3$. Let $g: \mathbb{Z} \rightarrow \mathbb{N}$ be defined by $g(x)=|x|+4$. What is the domain of $g \circ f$? What is the codomain? Is this function injective? Surjective?
10. Let \mathbb{R} be the universe and $P(x, y)$ be the statement $x+y \in \mathbb{Q}$. Determine the truth values of the following statements:
(a) $\forall x \in \overline{\mathbb{Q}} \exists y \in \overline{\mathbb{Q}} P(x, y)$
(b) $\exists x \in \overline{\mathbb{Q}} \forall y \in \overline{\mathbb{Q}} P(x, y)$
11. Evaluate $\left(3^{99}+6^{4}\right) \bmod 8$.
12. Solve the congruence $34 x \equiv 77(\bmod 89)$.
13. Is $\{2, \varnothing\} \subseteq \mathcal{P}(\mathbb{Z} \cup\{\varnothing\})$?
14. Use Fermat's Little Theorem to find $7^{121}(\bmod 13)$.
15. Use the Chinese Remainder Theorem to find all solutions to the system of congruences $x \equiv 2(\bmod 3), x \equiv 1(\bmod 4), x \equiv 3(\bmod 5)$.
