Math 55 Midterm Review

Jeremy Meza

September 30, 2019

1 Warm-up

- Turn to your neighbors and come up with topics you would like reviewed.
- Read the handout "How to lose marks on math exams".
- Ask a question!

2 Definitions

Give precise mathematical definitions of the following terms. Give counterexamples where necessary so that you truly understand what the term means. How would you start a proof in which you need to show that something satisfies the term?

- (a) Subset
- (b) Injection
- (c) Surjection
- (d) Bijection
- (e) Countable
- (f) gcd
- (g) Congruence modulo m

3 Proofs

- 1. Find a set S such that $\mathcal{P}(S) = \emptyset$ or explain why no such set exists.
- 2. Let $a, b, c \in \mathbb{Z}$ such that $a^2 + b^2 = c^2$. Prove that at least one of a, b is even. (Hint: Look at $c^2 \mod 4$).
- 3. Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be defined by $f(x, y) = 2^{x-1}(2y 1)$. Prove that f is injective.
- 4. Prove that if p is prime, the only solutions of $x^2 \equiv 1 \pmod{p}$ are integers x such that $x \equiv 1 \pmod{p}$ or $x \equiv -1 \pmod{p}$.
- 5. Let $f: A \to B$. Recall that for $S \subseteq B$, we define $f^{-1}(S) \coloneqq \{x \in A \mid f(x) \in S\}$. Prove or provide a counterexample that $f^{-1}(S \cup T) \subseteq f^{-1}(S) \cup f^{-1}(T)$.
- 6. Show with the help of Fermat's Little Theorem that if n is a positive integer, then 42 divides $n^7 n$ (Hint: Show that 2, 3, 7 divide it).
- 7. Prove that if m is a positive integer of the form 4k+3 for some non-negative integer k, then m is not the sum of the squares of two integers.

4 Computation

8. Let A, B be sets and P, Q, R propositions. Negate the following proposition:

 $\exists x \in A \ \forall y \in B \ \forall z \in A, \ P(x, y, z) \to (Q(z) \land R(x))$

- 9. Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by f(x) = 2x 3. Let $g : \mathbb{Z} \to \mathbb{N}$ be defined by g(x) = |x| + 4. What is the domain of $g \circ f$? What is the codomain? Is this function injective? Surjective?
- 10. Let \mathbb{R} be the universe and P(x, y) be the statement $x + y \in \mathbb{Q}$. Determine the truth values of the following statements:
 - (a) $\forall x \in \overline{\mathbb{Q}} \exists y \in \overline{\mathbb{Q}} P(x,y)$
 - (b) $\exists x \in \overline{\mathbb{Q}} \ \forall y \in \overline{\mathbb{Q}} \ P(x, y)$
- 11. Evaluate $(3^{99} + 6^4) \mod 8$.
- 12. Solve the congruence $34x \equiv 77 \pmod{89}$.
- 13. Is $\{2, \emptyset\} \subseteq \mathcal{P}(\mathbb{Z} \cup \{\emptyset\})$?
- 14. Use Fermat's Little Theorem to find $7^{121} \pmod{13}$.
- 15. Use the Chinese Remainder Theorem to find all solutions to the system of congruences $x \equiv 2 \pmod{3}, x \equiv 1 \pmod{4}, x \equiv 3 \pmod{5}$.