Math 55 Worksheet 6

Jeremy Meza
OH: Tues 10-12pm, Evans 1047

September 23, 2019

1 Recall

1. What is the definition of $a \mid b$?
2. What is the definition of $a \equiv b(\bmod m)$?
3. What is the definition of $\operatorname{gcd}(a, b)$?
4. What is the definition of relatively prime?
5. State Bezout's Theorem.

2 Problems

1. True or False: If $a \mid(m n)$ then either $a \mid m$ or $a \mid n$.
2. What is the base 5 expansion of 154 ? What is the base 3 expansion of 172 ?
3. Evaluate the following:
(a) $-23(\bmod 4)$.
(b) $\left(32^{3} \bmod 13\right)^{2} \bmod 11$
(c) $\left(7^{3} \bmod 23\right)^{2} \bmod 31$
(d) $\left(21^{2} \bmod 15\right)^{3} \bmod 22$
4. Calculate $\operatorname{gcd}(224,126)$. Write the gcd as a linear combination of 224 and 126.
5. Calculate $3^{2003}(\bmod 99)$.
6. Ask questions!

3 Extra

7. Let $a, b, c \in \mathbb{Z}$. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.
8. Let $a, b, c, m \in \mathbb{Z}$. Prove that if $a \equiv b(\bmod m)$, then $a c \equiv b c(\bmod m)$. Is it true that if $a c \equiv b c(\bmod m)$, then $a \equiv b(\bmod m)$?
9. Let $a, b, c \in \mathbb{Z}$ such that $a^{2}+b^{2}=c^{2}$. Prove that at least one of a, b is even. (Hint: Look at $\left.c^{2} \bmod 4\right)$.
10. Let A be a palindromic positive integer with an even number of digits. For example, A could be 403,304 . Prove that A is divisible by 11. (Hint: write A out in base 10 expansion).
