Math 55 Worksheet 5

Jeremy Meza OH: Tues 10-12pm, Evans 1047

September 18, 2019

1 Warm-up

- 1. What does it mean for a function to be injective (one-to-one)?
- 2. What does it mean for a function to be surjective (onto)?
- 3. What is the definition of countable?

2 Problems

1. Let $f: A \to B$ be a function. Given a subset $S \subseteq A$, we define the *image* of S under f to be the set

$$f(S) \coloneqq \{y \in B \mid \exists x \in S, f(x) = y\}$$

Let $S, T \subseteq A$. For each of the following, prove it must hold or provide a counterexample.

- (a) $f(S \cap T) \subseteq f(S) \cap f(T)$
- (b) $f(S \cap T) \supseteq f(S) \cap f(T)$
- 2. Suppose $f : \mathbb{R} \to \mathbb{R}$ is an increasing function, that is suppose

$$\forall x \in \mathbb{R} (x < y \longrightarrow f(x) < f(y))$$

Prove that f is injective. Can you think of an example where f is not surjective?

- 3. Give an example of a function $f : \mathcal{P}(\mathbb{N}) \to \mathbb{N}$ that is surjective.
- 4. Let S be the set of all infinite binary strings (that is, elements of S are infinitely long strings of 0s and 1s). Provide a bijection between S and $\mathcal{P}(\mathbb{N})$.
- 5. Let [n] denote the set $\{1, \ldots, n\}$. Let A be the set of subsets of [n] that have even size and B be the set of subsets of [n] that have odd size. Establish a bijection between A and B.

- 6. (hard) Let A, B be countable sets.
 - (a) Prove that if $A \cap B = \emptyset$, then $A \cup B$ is countable.
 - (b) Prove in general that $A \cup B$ is countable.

3 Extra

- 7. What do you think are the cardinalities of the following sets?
 - (a) The set of all infinite binary strings.
 - (b) The set of all infinite binary strings with only finitely many 1s.
 - (c) The set of functions from \mathbb{N} to \mathbb{N} .
 - (d) The set of functions from \mathbb{N} to $\{1,2\}$.
 - (e) $\bigcup_{n \in \mathbb{N}} [n]$.
 - (f) $\bigcup_{x \in \mathbb{R}} \{x\}.$
 - (g) The rational numbers.
 - (h) The irrational numbers.
 - (i) $\mathbb{N} \times \mathbb{Z} \times \mathbb{Q}$.
 - (j) $\mathcal{P}(\mathbb{N})$.
 - (k) $\mathcal{P}(\mathbb{R})$.
 - (l) $\mathcal{P}(\mathcal{P}(\mathbb{N}))$.
 - (m) The number of different cardinalities.
 - (n) The number of bijections from [n] to itself.
 - (o) C
 - (p) Any set that contains an uncountable set.
 - (q) Any set contained in a countable set.
 - (r) Any set that has a surjection onto an uncountable set.
 - (s) Any set that has an injection into a countable set.
 - (t) All the grains of sand in the world.
 - (u) All the quarks in all the protons in all the nuclei in all the atoms in all the particles in all of the universe.
 - (v) A basis of \mathbb{R} as a vector space over \mathbb{Q} .
 - (w) The set of all polynomials with integer coefficients.
 - (x) The set of algebraic numbers.
 - (y) The set of transcendental numbers.
 - (z) Your patience with this problem.