Math 55 Worksheet 4

Jeremy Meza
OH: Tues 10-12pm, Evans 1047

September 11, 2019

1 Warm-up

1. What are the sets $\mathbb{Z}, \mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}_{+}, \mathbb{R}-\mathbb{Q}$?
2. What is another name the following set is known by: $\left\{x \in \mathbb{R} \left\lvert\, \frac{x}{2} \in \mathbb{Z}\right.\right\}$.
3. Give sets S, T, what do $\bar{S}, S \cap T, S \cup T$, and $S-T$ denote?
4. Given a set S, what is $\mathcal{P}(S)$?
5. True or False?
(a) $\{1\} \in\{1\}$.
(b) $\{1\} \subseteq\{1\}$.
(c) $\varnothing \subseteq\{1\}$.
(d) $\varnothing \in\{1\}$.
(e) $\varnothing \in \mathcal{P}(\{1\})$
(f) $\{\varnothing\} \subseteq\{\varnothing,\{\varnothing\}\}$.
(g) $\{\{1\}, 2\} \subseteq\{1,2,\{1,2\}\}$.
(h) There are 8 elements in $\mathcal{P}(\{1,\{1,2\}, \varnothing\})$.
6. Let $f: A \rightarrow B$ be a function between two sets A, B. What is the domain of f ? What is the codomain? The image? The range?
7. What does it mean for a function to be injective (one-to-one)?
8. What does it mean for a function to be surjective (onto)?

2 Problems

1. Prove that $A=A \cap B$ if and only if $A \subseteq B$.
2. Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
3. Let $f: A \rightarrow B$ be a function. Let $S, T \subseteq A$. For each of the following, prove it must hold or provide a counterexample.
(a) $f(S \cap T) \subseteq f(S) \cap f(T)$
(b) $f(S \cap T) \supseteq f(S) \cap f(T)$
4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing function, that is suppose

$$
\forall x \in \mathbb{R}(x<y \longrightarrow f(x)<f(y))
$$

Prove that f is injective. Can you think of an example where f is not surjective?
5. Give an example of a function $f: \mathcal{P}(\mathbb{N}) \rightarrow \mathbb{N}$ that is surjective.
6. Determine whether each of the following are injections, surjections, bijections, or none of the three.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=3 x-2$
(b) $f: \mathbb{R} \rightarrow \mathbb{Z}, f(x)=\lfloor x\rfloor$
(c) $f: \mathbb{N} \rightarrow \mathbb{N}, f(n)=n+1$
(d) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x(x-3)(x+2)$
7. For a set S and $n \in \mathbb{N}-\{0\}$, we denote S^{n} as the Cartesian product of S with itself n times. Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x, y, z)=(x y, y z)
$$

Is f injective? surjective? Prove your claims.
8. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Suppose $g \circ f$ is injective. Prove that f is injective. If f is injective, is it necessarily true that $g \circ f$ is injective?

