Math 55 Worksheet 4

Jeremy Meza OH: Tues 10-12pm, Evans 1047

September 11, 2019

1 Warm-up

- 1. What are the sets $\mathbb{Z}, \mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}_+, \mathbb{R} \mathbb{Q}$?
- 2. What is another name the following set is known by: $\{x \in \mathbb{R} \mid \frac{x}{2} \in \mathbb{Z}\}.$
- 3. Give sets S, T, what do $\overline{S}, S \cap T$, $S \cup T$, and S T denote?
- 4. Given a set S, what is $\mathcal{P}(S)$?
- 5. True or False?
 - (a) $\{1\} \in \{1\}$.
 - (b) $\{1\} \subseteq \{1\}.$
 - (c) $\emptyset \subseteq \{1\}$.
 - (d) $\emptyset \in \{1\}$.
 - (e) $\varnothing \in \mathcal{P}(\{1\})$
 - (f) $\{\emptyset\} \subseteq \{\emptyset, \{\emptyset\}\}.$
 - (g) $\{\{1\}, 2\} \subseteq \{1, 2, \{1, 2\}\}.$
 - (h) There are 8 elements in $\mathcal{P}(\{1,\{1,2\},\emptyset\})$.
- 6. Let $f: A \to B$ be a function between two sets A, B. What is the domain of f? What is the codomain? The image? The range?
- 7. What does it mean for a function to be injective (one-to-one)?
- 8. What does it mean for a function to be surjective (onto)?

2 Problems

- 1. Prove that $A = A \cap B$ if and only if $A \subseteq B$.
- 2. Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

- 3. Let $f:A\to B$ be a function. Let $S,T\subseteq A$. For each of the following, prove it must hold or provide a counterexample.
 - (a) $f(S \cap T) \subseteq f(S) \cap f(T)$
 - (b) $f(S \cap T) \supseteq f(S) \cap f(T)$
- 4. Suppose $f: \mathbb{R} \to \mathbb{R}$ is an increasing function, that is suppose

$$\forall x \in \mathbb{R}(x < y \longrightarrow f(x) < f(y))$$

Prove that f is injective. Can you think of an example where f is not surjective?

- 5. Give an example of a function $f: \mathcal{P}(\mathbb{N}) \to \mathbb{N}$ that is surjective.
- 6. Determine whether each of the following are injections, surjections, bijections, or none of the three.
 - (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x 2$
 - (b) $f: \mathbb{R} \to \mathbb{Z}, f(x) = |x|$
 - (c) $f: \mathbb{N} \to \mathbb{N}, f(n) = n+1$
 - (d) $f: \mathbb{R} \to \mathbb{R}, f(x) = x(x-3)(x+2)$
- 7. For a set S and $n \in \mathbb{N} \{0\}$, we denote S^n as the Cartesian product of S with itself n times. Consider the function $f : \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$f(x, y, z) = (xy, yz)$$

Is f injective? surjective? Prove your claims.

8. Let $f:A\to B$ and $g:B\to C$ be functions. Suppose $g\circ f$ is injective. Prove that f is injective. If f is injective, is it necessarily true that $g\circ f$ is injective?