Math 55 Worksheet 15

Jeremy Meza

Monday, November 25

1 Problems

1. Find the strongly connected components of the graphs below.

2. Show that being bipartite is a graph invariant. Are the following graphs isomorphic?

3. How many vertices and edges are in the following graphs:
(a) The complete graph K_{n}.
(b) The cycle graph C_{n}.
(c) The wheel graph W_{n}.
(d) The n-cube Q_{n}.
4. For which values of n are the following graphs bipartite?
(a) The complete graph K_{n}.
(b) The cycle graph C_{n}.
(c) The wheel graph W_{n}.
(d) The n-cube Q_{n}.
5. Find the adjacency matrix for the following graphs.
(a) K_{n}
(b) C_{n}
(c) W_{n}
6. Let B be the incidence matrix of an undirected graph. What is the sum of entries in a row of B ? A column of B ?
7. Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 0\end{array}\right)$ be the adjacency matrix for an undirected graph G on three vertices v_{1}, v_{2}, v_{3}. Draw G. How many paths are there from v_{1} to v_{2} of length 1? Of length 2? Of length 3? What about paths from v_{1} to v_{3} ? Compute A^{2} and A^{3} and compare your answers to the $(1,2)$ and $(1,3)$ entries.
8. How many nonisomorphic connected simple graphs are there with n vertices when n is
a) 2 ?
b) 3 ?
c) 4 ?

2 Challenges

9. A tree is a connected graph without cycles. Show that the following are equivalent definitions of a tree:
(a) A maximally acyclic graph (i.e. adding any edge will result in a cycle)
(b) A minimally connected graph (i.e. removing any edge will result in a disconnected graph).
(c) A graph such that there exists a unique path between any two vertices.
10. Let T be a tree. Show that T is bipartite.
11. A graph is planar if it can be drawn without any edges intersecting (edges don't have to be straight lines). Which of the following graphs do you think are planar?
(a) $K_{3} ? K_{4} ? K_{5}$?
(b) $K_{2,2}$? $K_{3,3}$?
