Math 55 Worksheet 15

Jeremy Meza

Monday, November 25

1 Problems

1. Find the strongly connected components of the graphs below.

2. Show that being bipartite is a graph invariant. Are the following graphs isomorphic?

- 3. How many vertices and edges are in the following graphs:
 - (a) The complete graph K_n .
 - (b) The cycle graph C_n .
 - (c) The wheel graph W_n .
 - (d) The *n*-cube Q_n .

- 4. For which values of n are the following graphs bipartite?
 - (a) The complete graph K_n .
 - (b) The cycle graph C_n .
 - (c) The wheel graph W_n .
 - (d) The *n*-cube Q_n .
- 5. Find the adjacency matrix for the following graphs.
 - (a) K_n
 - (b) C_n
 - (c) W_n
- 6. Let *B* be the incidence matrix of an undirected graph. What is the sum of entries in a row of *B*? A column of *B*?
- 7. Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}$ be the adjacency matrix for an undirected graph G

on three vertices v_1, v_2, v_3 . Draw G. How many paths are there from v_1 to v_2 of length 1? Of length 2? Of length 3? What about paths from v_1 to v_3 ? Compute A^2 and A^3 and compare your answers to the (1, 2) and (1, 3) entries.

8. How many nonisomorphic connected simple graphs are there with n vertices when n is

2 Challenges

- 9. A *tree* is a connected graph without cycles. Show that the following are equivalent definitions of a tree:
 - (a) A maximally acyclic graph (i.e. adding any edge will result in a cycle)
 - (b) A minimally connected graph (i.e. removing any edge will result in a disconnected graph).
 - (c) A graph such that there exists a unique path between any two vertices.
- 10. Let T be a tree. Show that T is bipartite.
- 11. A graph is *planar* if it can be drawn without any edges intersecting (edges don't have to be straight lines). Which of the following graphs do you think are planar?

(a)
$$K_3$$
? K_4 ? K_5 ? (b) $K_{2,2}$? $K_{3,3}$?