Math 55 Worksheet 13

Jeremy Meza

Wednesday, November 13

1 Together

Turn to a neighbor and answer the following questions:
(a) What is a linear homogenous recurrence relation of degree k ?
(b) What is a characteristic equation? How can we use it to find a solution to a recurrence relation?
(c) What is a generating function?

Let's solve the recurrence relation $a_{k}=5 a_{k-1}-6 a_{k-2}$ with initial conditions $a_{0}=6$ and $a_{1}=30$. Let's first use the method of characteristic equations:

Now let's use generating functions. Let's first warm up by finding a closed form for the generating functions of the sequences $\left\{a_{n}\right\}$ given below

1. $a_{n}=5$ for $n \geq 0$
2. $a_{n}=5$ for $n \geq 3$ and $a_{0}=a_{1}=a_{2}=0$.
3. $a_{n}=5^{n}$ for $n \geq 0$.
4. $a_{n}=\binom{5}{n}$ for $n \geq 0$.
5. $a_{n}=5 n+3$ for $n \geq 0$.

Now back to the original recurrence relation:

2 Problems

1. (a) Find a recurrence relation for the number of bit strings of length n that contain a pair of consecutive 0's.
(b) What are the initial conditions?
(c) How many bit strings of length 5 contain two consecutive 0s?
2. Solve the recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}$ for $n \geq 2$ with initial conditions $a_{0}=6, a_{1}=8$.
3. In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?
4. Let $S(n, k)$ denote the number of ways to partition the set $\{1, \ldots, n\}$ into k nonempty subsets. For example, $S(3,2)=3$ because we have the partitions $\{\{1\},\{2,3\}\},\{\{2\},\{1,3\}\}$, and $\{\{3\},\{1,2\}\}$. We set the initial conditions $S(0,0)=1$ and $S(n, 0)=S(0, n)=0$ for $n>0$. Find a recurrence relation for $S(n, k)$.
5. Let p_{n} be the number of ways to group $2 n$ distinct people into pairs.
(a) Find a recursive formula for p_{n}.
(b) Give a combinatorial argument to show that $p_{n}=\frac{(2 n)!}{n!2^{n}}$.
6. Use generating functions to solve the recurrence relation $a_{k}=3 a_{k-1}+2$ with the initial condition $a_{0}=1$.
7. Use generating functions to prove the following identity

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

(Hint: multiply by x^{k} and take a sum.)

3 Challenge

1. A triangulation of a convex polygon is a decomposition of the polygon into triangles by connecting vertices with non-crossing line segments. Below are the triangulations of a hexagon:

Figure 1: $C_{4}=14$ triangulations of a hexagon.
(a) Let $C_{0}=1$ and for $n \geq 1$, let C_{n} be the number of triangulations of an $(n+2)$-gon. Show that C_{n} is given by the following recursive formula:

$$
C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}
$$

(b) Let $C_{0}^{\prime}=1$ and for $n \geq 1$, let C_{n}^{\prime} be the number of lattice paths to (n, n) that do not go below the main diagonal $y=x$. Show that $C_{n}^{\prime}=$ C_{n} by showing that C_{n}^{\prime} satisfies the same recurrence relation above. (Hint: case on when the lattice path first touches the diagonal).
2. The Catalan numbers C_{n} are given by the recurrence $C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}$ with initial conditions $C_{0}=C_{1}=1$.
(a) If $C(x)$ is the generating function for C_{n}, show that $x C(x)^{2}-C(x)+$ $1=0$.
(b) Using the initial conditions, show that $C(x)=\frac{1-\sqrt{1-4 x}}{2 x}$.
(c) For any real number x, define $\binom{x}{n}:=\frac{x(x-1) \cdots(x-n+1)}{n(n-1) \cdots 1}$. Show that if n is a positive integer, then

$$
\binom{-1 / 2}{n}=\frac{\binom{2 n}{n}}{(-4)^{n}}
$$

(d) Use the preceding exercises and the binomial theorem to show that

$$
C(x)=\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{n}
$$

and hence $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
3. (If you know linear algebra). Consider the Fibonacci sequence F_{n}. We can write this as

$$
\binom{F_{n}}{F_{n-1}}=A\binom{F_{n-1}}{F_{n-2}} \quad \text { with } \quad A=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)
$$

(a) Prove that $\binom{F_{n}}{F_{n-1}}=A^{n-1}\binom{F_{1}}{F_{0}}$.
(b) Calculate A^{n-1} by diagonalizing A.
(c) Derive Binet's formula for F_{n} :

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

4. Recall that $S(n, k)$ denotes the number of ways to block n elements into k nonempty subsets.
(a) Use $S(n, k)$ to count the number of surjective functions $f:[n] \rightarrow[k]$.
(b) Let $(x)_{k}$ denote the falling factorial $(x)_{k}:=x(x-1)(x-2) \cdots(x-k+1)$. By counting the total number of functions $f:[n] \rightarrow[x]$ in 2 ways, deduce the equality

$$
x^{n}=\sum_{k=0}^{n} S(n, k)(x)_{k}
$$

