Math 55 Worksheet 13

Jeremy Meza

Wednesday, November 13

1 Together

Turn to a neighbor and answer the following questions:

- (a) What is a linear homogenous recurrence relation of degree k?
- (b) What is a *characteristic equation*? How can we use it to find a solution to a recurrence relation?
- (c) What is a generating function?

Let's solve the recurrence relation $a_k = 5a_{k-1} - 6a_{k-2}$ with initial conditions $a_0 = 6$ and $a_1 = 30$. Let's first use the method of characteristic equations:

Now let's use generating functions. Let's first warm up by finding a closed form for the generating functions of the sequences $\{a_n\}$ given below

- 2. $a_n = 5$ for $n \ge 3$ and $a_0 = a_1 = a_2 = 0$.
- 3. $a_n = 5^n$ for $n \ge 0$.

1. $a_n = 5$ for $n \ge 0$

- 4. $a_n = \binom{5}{n}$ for $n \ge 0$.
- 5. $a_n = 5n + 3$ for $n \ge 0$.

Now back to the original recurrence relation:

2 Problems

- 1. (a) Find a recurrence relation for the number of bit strings of length n that contain a pair of consecutive 0's.
 - (b) What are the initial conditions?
 - (c) How many bit strings of length 5 contain two consecutive 0s?
- 2. Solve the recurrence relation $a_n = 4a_{n-1} 4a_{n-2}$ for $n \ge 2$ with initial conditions $a_0 = 6$, $a_1 = 8$.
- 3. In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?
- 4. Let S(n, k) denote the number of ways to partition the set $\{1, \ldots, n\}$ into k nonempty subsets. For example, S(3, 2) = 3 because we have the partitions $\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\}, \text{ and } \{\{3\}, \{1,2\}\}$. We set the initial conditions S(0,0) = 1 and S(n,0) = S(0,n) = 0 for n > 0. Find a recurrence relation for S(n,k).
- 5. Let p_n be the number of ways to group 2n distinct people into pairs.
 - (a) Find a recursive formula for p_n .
 - (b) Give a combinatorial argument to show that $p_n = \frac{(2n)!}{n!2^n}$.
- 6. Use generating functions to solve the recurrence relation $a_k = 3a_{k-1} + 2$ with the initial condition $a_0 = 1$.
- 7. Use generating functions to prove the following identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

(Hint: multiply by x^k and take a sum.)

3 Challenge

1. A *triangulation* of a convex polygon is a decomposition of the polygon into triangles by connecting vertices with non-crossing line segments. Below are the triangulations of a hexagon:

Figure 1: $C_4 = 14$ triangulations of a hexagon.

(a) Let $C_0 = 1$ and for $n \ge 1$, let C_n be the number of triangulations of an (n+2)-gon. Show that C_n is given by the following recursive formula:

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$

- (b) Let $C'_0 = 1$ and for $n \ge 1$, let C'_n be the number of lattice paths to (n, n) that do not go below the main diagonal y = x. Show that $C'_n = C_n$ by showing that C'_n satisfies the same recurrence relation above. (Hint: case on when the lattice path first touches the diagonal).
- 2. The Catalan numbers C_n are given by the recurrence $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$ with initial conditions $C_0 = C_1 = 1$.
 - (a) If C(x) is the generating function for C_n , show that $xC(x)^2 C(x) + 1 = 0$.
 - (b) Using the initial conditions, show that $C(x) = \frac{1-\sqrt{1-4x}}{2x}$.
 - (c) For any real number x, define $\binom{x}{n} \coloneqq \frac{x(x-1)\cdots(x-n+1)}{n(n-1)\cdots 1}$. Show that if n is a positive integer, then

$$\binom{-1/2}{n} = \frac{\binom{2n}{n}}{(-4)^n}$$

(d) Use the preceding exercises and the binomial theorem to show that

$$C(x) = \sum_{n=0}^{\infty} \frac{1}{n+1} \binom{2n}{n} x^n$$

and hence $C_n = \frac{1}{n+1} \binom{2n}{n}$.

3. (If you know linear algebra). Consider the Fibonacci sequence F_n . We can write this as

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = A \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} \quad \text{with} \quad A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

- (a) Prove that $\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = A^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$.
- (b) Calculate A^{n-1} by diagonalizing A.
- (c) Derive Binet's formula for F_n :

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

- 4. Recall that S(n,k) denotes the number of ways to block n elements into k nonempty subsets.
 - (a) Use S(n,k) to count the number of surjective functions $f:[n] \to [k]$.
 - (b) Let $(x)_k$ denote the falling factorial $(x)_k \coloneqq x(x-1)(x-2)\cdots(x-k+1)$. By counting the total number of functions $f \colon [n] \to [x]$ in 2 ways, deduce the equality

$$x^n = \sum_{k=0}^n S(n,k)(x)_k$$