Math 55 Worksheet 10

Jeremy Meza

Monday, October 21

1 Warm-up

Try to recall the following concepts without looking at your notes: Sum Rule Product Rule Inclusion-Exclusion Pigeonhole Principle r-permutation r-combination binomial coefficient binomial theorem $\binom{n}{k}$

2 Problems

- 1. How many different three-letter initials can people have?
- 2. How many different three-letter initials with none of the letters repeated can people have?
- 3. How many positive integers not exceeding 100 are divisible either by 4 or by 6?
- 4. Find the number of 5-permutations of a set with nine elements.
- 5. A professor writes 40 discrete mathematics true/false questions. Of the statements in these questions, 17 are true. If the questions can be positioned in any order, how many different answer keys are possible?
- 6. The English alphabet contains 21 consonants and 5 vowels. How many strings of 6 English letters contain
 - (a) exactly one vowel?
 - (b) exactly two vowels?
 - (c) at least one vowel?
 - (d) at least two vowels?
- 7. What is the coefficient of x^4y^7 in the expansion of $(2x y)^{11}$?
- 8. Let $n \in \mathbb{N}$ and suppose we have a set $S \subseteq [2n]$ of size |S| = n + 1. Prove that there must be two elements $x, y \in S$ that are relatively prime.

9. Let $n \in \mathbb{N}.$ Prove by a combinatorial argument that

$$\binom{2n}{2} = 2\binom{n}{2} + n^2$$

10. Let $n \in \mathbb{Z}^+$. Prove by a combinatorial argument that

$$n \cdot 2^{n-1} = \sum_{k=1}^{n} \binom{n}{k} \cdot k$$

11. Let $n \in \mathbb{N}$. Prove by a combinatorial argument that

$$\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n$$