Math 54 Section Worksheet 9
 GSI: Jeremy Meza

Office Hours: Monday 3:30-5:30pm, Evans 1047
Monday, March 2, 2020

1 Warm-Up

- Find someone next to you and define what a basis of a subspace is. How does a basis allow you to write a vector in a vector space as a column vector in some \mathbb{R}^{n} ?
- One of you define what the kernel of a linear transformation is. How does the kernel relate to being one-to-one or onto?
- One of you define what the image of a linear transformation is. How does the image relate to being one-to-one or onto?

2 Problems

For the following problems, we let $\mathbb{P}_{n}=\{$ polynomials with real coefficients of degree $\leq n\}$.

1. Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous $\}$.
(a) Convince yourself that V is a vector space.
(b) Let $W=\{f \in V \mid f(1)=0\}$. Show that W is a subspace.
2. Let $p_{1}(t)=1-3 t^{2}, p_{2}(t)=2+t, p_{3}(t)=t^{3}, p_{4}(t)=1+t+t^{3}$ be polynomials in \mathbb{P}_{3}. Determine whether $p_{1}, p_{2}, p_{3}, p_{4}$ are linearly independent.
3. Let $V=\left\{T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \mid T\right.$ is linear $\}$ be the set of all linear transformations from \mathbb{R}^{2} to \mathbb{R}^{2}.
(a) Is V a vector space? What is addition and scalar multiplication, and do they satisfy the appropriate axioms?
(b) What do you think is a basis for V ?
4. Define a linear transformation $T: \mathbb{P}_{1} \rightarrow \mathbb{R}^{2}$ by $T(p(t))=\binom{p(0)}{p(1)}$. Find polynomials that span the kernel of T and describe the image of T. Can you describe the kernel and image of T if we changed the domain to \mathbb{P}_{2} ?
5. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{4}$ be the transformation that maps a polynomial $p(t)$ to the polynomial $p(t)+t^{2} p(t)$.
(a) Find the image of $p(t)=2-t+t^{2}$.
(b) Show that T is a linear transformation.
(c) Find the matrix for T relative to the bases $\left\{1, t, t^{2}\right\}$ and $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$.
6. Let $V=\operatorname{Span}\{\cos t, \sin t\}$.
(a) Convince yourself that V is a vector space. What is a basis for V ?
(b) Define the linear transformation $D: V \rightarrow V$ by $D(f)=\frac{\partial f}{\partial t}$. In other words, $D(f)$ is the derivative of f. Can you write down a matrix for D by representing functions as column vectors?
7. Let $I: \mathbb{P}_{2} \rightarrow \mathbb{P}_{3}$ be the linear transformation defined by

$$
I(p(t))=\int_{0}^{t} p(x) d x
$$

(a) Find the matrix of I with respect to the bases $\left\{1, t, t^{2}\right\}$ and $\left\{1, t, t^{2}, t^{3}\right\}$ for \mathbb{P}_{2} and \mathbb{P}_{3}, respectively.
(b) Let $D: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be the derivative function, defined similarly as in the previous problem. Are D and I inverses? (try computing $D I$ and $I D)$.
(c) Explain why there is never a unique solution $p(t)$ to an equation of the form $D(p(t))=q(t)$. Can you explain using linear algebra concepts?
8. Let $\mathcal{D}=\left\{d_{1}, d_{2}\right\}$ and $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ be bases for vector spaces V, W, respectively. Let $T: V \rightarrow W$ be a linear transformation with the property that

$$
T\left(d_{1}\right)=2 b_{1}-3 b_{2} \quad T\left(d_{2}\right)=-4 b_{1}+5 b_{2}
$$

Find the matrix for T relative to \mathcal{D} and \mathcal{B}.
9. Goodbye leap day...

