Math 54 Section Worksheet 7: Midterm Review
 GSI: Jeremy Meza

Office Hours: Monday 3:30-5:30pm, Evans 1047
Wednesday, February 18, 2020

1 Warm Up

Let A be an $n \times n$ matrix. Find someone next to you and together try to list as many properties that are equivalent to A being invertible. Make sure you are using the correct terminology when referring to matrices, subspaces, linear transformations, vectors, etc.

2 Problems

1. Let $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ and $\mathcal{C}=\left\{c_{1}, c_{2}\right\}$, where

$$
b_{1}=\binom{2}{-1} \quad b_{2}=\binom{2}{3} \quad c_{1}=\binom{4}{1} \quad c_{2}=\binom{-2}{-1}
$$

Suppose $x=3 b_{1}+2 b_{2}$. Write x in the basis \mathcal{C}.
2. Let W be the set of all vectors of the form

$$
\left(\begin{array}{c}
-a+1 \\
a-6 b \\
2 b+a
\end{array}\right)
$$

where a, b represent arbitrary real numbers. Either find a set S of vectors that spans W or give an example to show that W is not a subspace.
3. Calculate the determinant of $A=\left(\begin{array}{ccc}1 & -1 & 3 \\ 2 & 0 & 1 \\ 0 & -2 & 4\end{array}\right)$ in two different ways: (a) by cofactor expansion, and (b) by row reducing.
4. Let $A=\left(\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right)$. Show that $\operatorname{det} A=0$.
5. Let $\mathbf{v}_{1}=\left(\begin{array}{r}1 \\ 0 \\ -1 \\ 0\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}0 \\ -1 \\ 0 \\ 1\end{array}\right)$, and $\mathbf{v}_{3}=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right)$.
(a) Do $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \operatorname{span} \mathbb{R}^{4}$?
(b) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation that projects onto the first 3 coordinates, i.e. it sends $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2}, x_{3}\right)$. Does $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ span \mathbb{R}^{3} ?
6. Which of the following is true?
(a) A linearly independent set must contain the 0 vector.
(b) A linearly independent set can never contain the 0 vector.
(c) A linearly independent set can sometimes contain the 0 vector.
7. Which of the following is true?
(a) A spanning set of a subspace must contain the 0 vector.
(b) A spanning set of a subspace can never contain the 0 vector.
(c) A spanning set of a subspace can sometimes contain the 0 vector.
8. Give an explicit example (don't just draw a picture) of a linear transformation that is:
(a) both one-to-one and onto.
(b) neither one-to-one nor onto.
(c) one-to-one but not onto.
(d) onto but not one-to-one.
9. Find bases for the column space and null space of $A=\left(\begin{array}{rrrrr}2 & -4 & 6 & 0 & -6 \\ 0 & 0 & -2 & 12 & -10 \\ 1 & -2 & 4 & -5 & 1\end{array}\right)$.
10. Go back and do all the problems listed in all the old worksheets. Come to office hours. Ask me questions.

