Math 54 Section Worksheet 6
 GSI: Jeremy Meza

Office Hours: Monday 3:30-5:30pm, Evans 1047
Friday, February 14, 2020

1 Warm-up

1. Find the inverse of the matrix $A=\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)$ without using some memorized formula for the inverse.
2. Find some people. One of you define column space, one of you define null space one of you define basis, and one of you define dimension.

2 Problems

1. Let $A=\left(\begin{array}{ccccc}1 & 5 & -4 & -3 & 1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$. Find an explicit description of $\mathrm{Nul} A$ by listing vectors that span the null space.
2. Let $A=\left(\begin{array}{cc}4 & 10 \\ -6 & -15\end{array}\right)$ and $w=\binom{2}{-3}$. Determine if w is in $\operatorname{Col} A$ and if w is in $\operatorname{Nul} A$.
3. Calculate the inverse of $A=\left(\begin{array}{ccc}3 & 1 & 0 \\ 0 & -2 & 1 \\ 1 & -1 & 1\end{array}\right)$.
4. Calculate the determinant of $A=\left(\begin{array}{ccc}1 & -1 & 3 \\ 2 & 0 & 1 \\ 0 & -2 & 4\end{array}\right)$ in two different ways: (a) by cofactor expansion, and (b) by row reducing.
5. True or False?
(a) A row replacement operation does not affect the determinant of a matrix.
(b) The determinant of A is the product of the pivots in any echelon form U of A, multiplied by $(-1)^{r}$, where r is the number of row interchanges made during row reduction from A to U.
(c) If the columns of A are linearly dependent, then $\operatorname{det} A=0$.
(d) $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$.
(e) If three row interchanges are made in succession, then the new determinant equals the old determinant.
(f) The determinant of A is the product of the diagonal entries in A.
(g) $\operatorname{det} A^{-1}=-\operatorname{det} A$.
