Math 54 Section Worksheet 5

GSI: Jeremy Meza
Office Hours: Monday 3:30-5:30pm, Evans 1047
Monday, February 10, 2020

1 Warm-up

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Choose one of the following: We say that T is one-to-one iff
(a) Every x in \mathbb{R}^{n} has a unique y in \mathbb{R}^{m} with $T(x)=y$.
(b) Every x in \mathbb{R}^{n} has at most one y in \mathbb{R}^{m} with $T(x)=y$.
(c) For every $y \in \mathbb{R}^{m}$, there exists an x in \mathbb{R}^{n} such that $T(x)=y$.
(d) Every y in \mathbb{R}^{m} has at most one x in \mathbb{R}^{n} with $T(x)=y$.

We say that T is onto iff
(a) Every x in \mathbb{R}^{n} has at most one y in \mathbb{R}^{m} with $T(x)=y$.
(b) Every x in \mathbb{R}^{n} has at least one y in \mathbb{R}^{m} with $T(x)=y$.
(c) For every y in \mathbb{R}^{m}, there exists an x in \mathbb{R}^{n} such that $T(x)=y$.
(d) Every y in \mathbb{R}^{m} has at most one x in \mathbb{R}^{n} with $T(x)=y$.

2 Problems

1. Suppose $A B=\left(\begin{array}{cc}5 & 4 \\ -2 & 3\end{array}\right)$ and $B=\left(\begin{array}{ll}7 & 3 \\ 2 & 1\end{array}\right)$. Find A.
2. All matrices below are $n \times n$. Mark each implication as True or False.
(a) If the equation $A x=0$ has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix. \mathbf{T}
(b) If the columns of A span \mathbb{R}^{n}, then the columns are linearly independent. T
(c) If A is an $n \times n$ matrix, then the equation $A x=b$ has at least one solution for each b in \mathbb{R}^{n}. \mathbf{T}
(d) If the equation $A x=0$ has a nontrivial solution, then A has fewer than n pivot positions. \mathbf{T}
(e) In order for a matrix B to be the inverse of A, both equations $A B=I$ and $B A=I$ must be true. \mathbf{T}
(f) If A and B are $n \times n$ and invertible, then $A^{-1} B^{-1}$ is the inverse of $A B . \mathbf{F}$
(g) If A is an invertible $n \times n$ matrix, then the equation $A x=b$ is consistent for each b in \mathbb{R}^{n}. \mathbf{T}
3. Can a square matrix with two identical columns be invertible? Why or why not? No, the columns are not linearly independent.

3 Possibly Harder Problems

4. Suppose $C A=I_{n}$ (the $n \times n$ identity matrix). Show that the equation $A x=0$ has only the trivial solution. Explain why A cannot have more columns than rows.
5. Suppose $A D=I_{m}$ (the $m \times m$ identity matrix). Show that for any b in \mathbb{R}^{m}, the equation $A x=b$ has a solution. Explain why A cannot have more rows than columns.
6. Let C be a 2×2 matrix. Prove that there exists 2×2 matrices A, B such that $C=A B-B A$ if and only if $c_{11}+c_{22}=0$.
7. If A is a 2×1 matrix and B is a 1×2 matrix, prove that $C=A B$ is not invertible.
8. Suppose A is an $n \times n$ matrix. Explain why the columns of A^{2} span \mathbb{R}^{n} whenever the columns of A are linearly independent.
9. (a) Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. Show that $A^{3}=0$. Compute $(I-A)\left(I+A+A^{2}\right)$. What can you conclude about $(I-A)^{-1}$?
(b) Suppose $A^{n}=0$ for some $n>1$. Find an inverse for $I-A$.
