Math 54 Section Worksheet 5

GSI: Jeremy Meza s: Monday 3:30-5:30pm, Evans 10

Office Hours: Monday 3:30-5:30pm, Evans 1047 Monday, February 10, 2020

1 Warm-up

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Choose one of the following: We say that T is **one-to-one** iff

- (a) Every x in \mathbb{R}^n has a unique y in \mathbb{R}^m with T(x) = y.
- (b) Every x in \mathbb{R}^n has at most one y in \mathbb{R}^m with T(x) = y.
- (c) For every $y \in \mathbb{R}^m$, there exists an x in \mathbb{R}^n such that T(x) = y.
- (d) Every y in \mathbb{R}^m has at most one x in \mathbb{R}^n with T(x) = y.

We say that T is **onto** iff

- (a) Every x in \mathbb{R}^n has at most one y in \mathbb{R}^m with T(x) = y.
- (b) Every x in \mathbb{R}^n has at least one y in \mathbb{R}^m with T(x) = y.
- (c) For every y in \mathbb{R}^m , there exists an x in \mathbb{R}^n such that T(x) = y.
- (d) Every y in \mathbb{R}^m has at most one x in \mathbb{R}^n with T(x) = y.

2 Problems

- 1. Suppose $AB = \begin{pmatrix} 5 & 4 \\ -2 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 7 & 3 \\ 2 & 1 \end{pmatrix}$. Find A.
- 2. All matrices below are $n \times n$. Mark each implication as True or False.
 - (a) If the equation Ax = 0 has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix.
 - (b) If the columns of A span \mathbb{R}^n , then the columns are linearly independent.
 - (c) If A is an $n \times n$ matrix, then the equation Ax = b has at least one solution for each b in \mathbb{R}^n .
 - (d) If the equation Ax = 0 has a nontrivial solution, then A has fewer than n pivot positions.
 - (e) In order for a matrix B to be the inverse of A, both equations AB = I and BA = I must be true.
 - (f) If A and B are $n \times n$ and invertible, then $A^{-1}B^{-1}$ is the inverse of AB.

- (g) If A is an invertible $n \times n$ matrix, then the equation Ax = b is consistent for each b in \mathbb{R}^n .
- 3. Can a square matrix with two identical columns be invertible? Why or why not?

3 Possibly Harder Problems

- 4. Suppose $CA = I_n$ (the $n \times n$ identity matrix). Show that the equation Ax = 0 has only the trivial solution. Explain why A cannot have more columns than rows.
- 5. Suppose $AD = I_m$ (the $m \times m$ identity matrix). Show that for any b in \mathbb{R}^m , the equation Ax = b has a solution. Explain why A cannot have more rows than columns.
- 6. Let C be a 2×2 matrix. Prove that there exists 2×2 matrices A, B such that C = AB BA if and only if $c_{11} + c_{22} = 0$.
- 7. If A is a 2×1 matrix and B is a 1×2 matrix, prove that C = AB is not invertible.
- 8. Suppose A is an $n \times n$ matrix. Explain why the columns of A^2 span \mathbb{R}^n whenever the columns of A are linearly independent.
- 9. (a) Let $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Show that $A^3 = 0$. Compute $(I A)(I + A + A^2)$.

What can you conclude about $(I - A)^{-1}$?

(b) Suppose $A^n = 0$ for some n > 1. Find an inverse for I - A.