Math 54 Section Worksheet 4
 GSI: Jeremy Meza

Office Hours: Monday 3:30-5:30pm, Evans 1047
Friday, February 7, 2020

1 Together

Recall that a linear transformation $T: \mathbb{R}^{q} \rightarrow \mathbb{R}^{p}$ is a function that takes in vectors in \mathbb{R}^{q} and outputs a unique vector in \mathbb{R}^{p}, such that

$$
T(u+v)=T(u)+T(v), \quad T(c u)=c T(u) \quad \text { for all } u, v \in \mathbb{R}^{q}, c \in \mathbb{R}
$$

We noted before that every matrix A gives a linear transformation. More specifically, suppose A is a $p \times q$ matrix. Then, we get the linear transformation $T: \mathbb{R}^{q} \rightarrow \mathbb{R}^{p}$ such that $T(v)=A v$.

Example 1.1. Describe in words the transformation that is given by the matrix $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$.
Example 1.2. Let's consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by flipping around the y axis.

In fact, it holds that every linear transformation is given by some matrix transformation. That is, if $T: \mathbb{R}^{q} \rightarrow R^{p}$ is a linear transformation, then we will construct a matrix A such that $T(x)=A x$ for all $x \in R^{q}$.

2 Problems

1. Find the matrix associated to the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by flipping around the $y z$-plane and then projecting to the $x y$ plane.
2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the transformation that reflects each vector $\mathbf{x}=$ $\left(x_{1}, x_{2}, x_{3}\right)$ through the plane $x_{3}=0$ onto $T(\mathbf{x})=\left(x_{1}, x_{2},-x_{3}\right)$. Show that T is a linear transformation.
3. Let $e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}, y_{1}=\binom{2}{5}$, and $y_{2}=\binom{-1}{6}$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps e_{1} to y_{1} and maps e_{2} to y_{2}. Find the images of $\binom{5}{-3}$ and $\binom{x_{1}}{x_{2}}$.
4. Mark each statement True or False.
(a) A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
(b) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates vectors about the origin through an angle φ, then T is a linear transformation.
(c) When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
(d) A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto \mathbb{R}^{m} if every vector x in \mathbb{R}^{n} maps onto some vector in \mathbb{R}^{m}.
(e) If A is a 3×2 matrix, then the transformation $x \mapsto A x$ cannot be one-to-one.
(f) Not every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a matrix transformation.
(g) The columns of the standard matrix for a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} are the images of the columns of the $n \times n$ identity matrix.
(h) The standard matrix of a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} that reflects points through the horizontal axis, the vertical axis, or the origin has the form $\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$, where a and d are ± 1.
(i) A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if each vector in \mathbb{R}^{n} maps onto a unique vector in \mathbb{R}^{m}.
(j) If A is a 3×2 matrix, then the transformation $x \mapsto A x$ cannot map \mathbb{R}^{2} onto \mathbb{R}^{3}.
5. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is one-to-one. Describe the possible reduced row echelon forms of its corresponding matrix.
6. Suppose $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is onto. Describe the possible reduced row echelon forms of its corresponding matrix.
