Math 54 Section Worksheet 4 GSI: Jeremy Meza Office Hours: Monday 3:30-5:30pm, Evans 1047 Friday, February 7, 2020

Together 1

Recall that a *linear transformation* $T : \mathbb{R}^q \to \mathbb{R}^p$ is a function that takes in vectors in \mathbb{R}^q and outputs a unique vector in \mathbb{R}^p , such that

T(u+v) = T(u) + T(v), T(cu) = cT(u) for all $u, v \in \mathbb{R}^q, c \in \mathbb{R}$

We noted before that every matrix A gives a linear transformation. More specifically, suppose A is a $p \times q$ matrix. Then, we get the linear transformation $T: \mathbb{R}^q \to \mathbb{R}^p$ such that T(v) = Av.

Example 1.1. Describe in words the transformation that is given by the matrix $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$

Example 1.2. Let's consider the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by flipping around the y axis.

In fact, it holds that every linear transformation is given by some matrix transformation. That is, if $T: \mathbb{R}^q \to \mathbb{R}^p$ is a linear transformation, then we will construct a matrix A such that T(x) = Ax for all $x \in \mathbb{R}^q$.

Problems $\mathbf{2}$

- 1. Find the matrix associated to the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by flipping around the yz-plane and then projecting to the xyplane.
- 2. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the transformation that reflects each vector $\mathbf{x} =$ (x_1, x_2, x_3) through the plane $x_3 = 0$ onto $T(\mathbf{x}) = (x_1, x_2, -x_3)$. Show that T is a linear transformation.

- 3. Let $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, y_1 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$, and $y_2 = \begin{pmatrix} -1 \\ 6 \end{pmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps e_1 to y_1 and maps e_2 to y_2 . Find the images of $\begin{pmatrix} 5 \\ -3 \end{pmatrix}$ and $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.
- 4. Mark each statement True or False.
 - (a) A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
 - (b) If $T : \mathbb{R}^2 \to \mathbb{R}^2$ rotates vectors about the origin through an angle φ , then T is a linear transformation.
 - (c) When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
 - (d) A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector x in \mathbb{R}^n maps onto some vector in \mathbb{R}^m .
 - (e) If A is a 3×2 matrix, then the transformation $x \mapsto Ax$ cannot be one-to-one.
 - (f) Not every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation.
 - (g) The columns of the standard matrix for a linear transformation from \mathbb{R}^n to \mathbb{R}^m are the images of the columns of the $n \times n$ identity matrix.
 - (h) The standard matrix of a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 that reflects points through the horizontal axis, the vertical axis, or the origin has the form $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$, where a and d are ±1.
 - (i) A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each vector in \mathbb{R}^n maps onto a unique vector in \mathbb{R}^m .
 - (j) If A is a 3×2 matrix, then the transformation $x \mapsto Ax$ cannot map \mathbb{R}^2 onto \mathbb{R}^3 .
- 5. Suppose $T : \mathbb{R}^3 \to \mathbb{R}^4$ is one-to-one. Describe the possible reduced row echelon forms of its corresponding matrix.
- 6. Suppose $T : \mathbb{R}^4 \to \mathbb{R}^3$ is onto. Describe the possible reduced row echelon forms of its corresponding matrix.