Math 54 Section Worksheet 3 Solutions

GSI: Jeremy Meza Office Hours: Monday 3:30-5:30pm, Evans 1047 Monday, February 3, 2020

1 Warm-Up

1. Describe the solutions of the following system in parametric vector form. Give a geometric description of the solution set.

$$x_1 + 3x_2 + x_3 = 1$$
$$-4x_1 - 9x_2 + 2x_3 = -1$$
$$-3x_2 - 6x_3 = -3$$

- 2. Which of the following are correct?
 - (a) I can multiply an $m \times n$ matrix by an $m \times 1$ matrix and I get a $1 \times n$ matrix.
 - (b) I can multiply an $m \times n$ matrix by an $n \times 1$ matrix and I get an $m \times 1$ matrix.
 - (c) I can multiply an $m \times n$ matrix by an $m \times 1$ matrix and I get an $n \times 1$ matrix.
 - (d) I can multiply an $m \times n$ matrix by an $1 \times n$ matrix and I get a $1 \times m$ matrix.

2 Problems

- 1. Let $v_1 = \begin{pmatrix} 1 \\ -5 \\ -3 \end{pmatrix}$, $v_2 = \begin{pmatrix} -2 \\ 10 \\ 6 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ -9 \\ h \end{pmatrix}$. For what values of h is v_3 in Span $\{v_1, v_2\}$, and for what values of h is $\{v_1, v_2, v_3\}$ linearly dependent?
- 2. Mark each statement True or False.
 - (a) The columns of a matrix A are linearly independent if the equation Ax = 0 has the trivial solution. **F**
 - (b) If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S. **F**
 - (c) The columns of any 4×5 matrix are linearly dependent. **T**
 - (d) If x and y are linearly independent, and if $\{x, y, z\}$ is linearly dependent, then z is in Span $\{x, y\}$. **T**
 - (e) Two nonzero vectors are linearly dependent if and only if they lie on a line through the origin. T

- (f) If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent. **F**
- (g) If x and y are linearly independent, and if z is in $\mathrm{Span}\{x,y\}$, then $\{x,y,z\}$ is linearly dependent. $\mathbf T$
- (h) If a set in \mathbb{R}^n is linearly dependent, then the set contains more vectors than there are entries in each vector. **F**
- 3. For the given cases below, (i) does the equation $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution and (ii) does the equation $A\mathbf{x} = \mathbf{b}$ have at least one solution for every possible \mathbf{b} ?
 - (a) A is a 3×3 matrix with three pivot positions. (i) No (ii) Yes
 - (b) A is a 3×3 matrix with two pivot positions. (i) Yes (ii) No
 - (c) A is a 3×2 matrix with two pivot positions. (i) No (ii) No
 - (d) A is a 2×4 matrix with two pivot positions. (i) Yes (ii) Yes
- 4. For the statements below, mark either True or False. If True, give a justification. If False, provide a counterexample.
 - (a) If v_1, \ldots, v_4 are in \mathbb{R}^4 and $v_3 = 0$, then $\{v_1, \ldots, v_4\}$ is linearly dependent. T
 - (b) If v_1 and v_2 are in \mathbb{R}^4 and v_2 is not a scalar multiple of v_1 , then $\{v_1, v_2\}$ is linearly independent. **T**
 - (c) If v_1, \ldots, v_4 are linearly independent vectors in \mathbb{R}^4 , then $\{v_1, v_2, v_3\}$ is also linearly independent. **T**

3 Possibly Harder Problems

- 5. Suppose A is a 3×3 matrix and b is a vector in \mathbb{R}^3 with the property that Ax = b has a unique solution. Explain why the columns of A must span \mathbb{R}^3 .
- 6. Suppose $A\mathbf{x} = \mathbf{b}$ has a solution. Prove that the solution is unique if and only if the matrix equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. (recall that the "trivial solution" is the solution $\mathbf{x} = 0$.)
- 7. Construct a 2×2 matrix A such that the solution set of the equation $A\mathbf{x} = \mathbf{0}$ is the line in \mathbb{R}^2 through (4,1) and the origin. Then, find a vector \mathbf{b} in \mathbb{R}^2 such that the solution set of $A\mathbf{x} = \mathbf{b}$ is not a line in \mathbb{R}^2 parallel to the solution set of $A\mathbf{x} = \mathbf{0}$.