Math 54 Section Worksheet 3
 GSI: Jeremy Meza

Office Hours: Monday 3:30-5:30pm, Evans 1047
Monday, February 3, 2020

1 Warm-Up

1. Describe the solutions of the following system in parametric vector form. Give a geometric description of the solution set.

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{3} & =1 \\
-4 x_{1}-9 x_{2}+2 x_{3} & =-1 \\
-3 x_{2}-6 x_{3} & =-3
\end{aligned}
$$

2. Which of the following are correct?
(a) I can multiply an $m \times n$ matrix by an $m \times 1$ matrix and I get a $1 \times n$ matrix.
(b) I can multiply an $m \times n$ matrix by an $n \times 1$ matrix and I get an $m \times 1$ matrix.
(c) I can multiply an $m \times n$ matrix by an $m \times 1$ matrix and I get an $n \times 1$ matrix.
(d) I can multiply an $m \times n$ matrix by an $1 \times n$ matrix and I get a $1 \times m$ matrix.

2 Problems

1. Let $v_{1}=\left(\begin{array}{c}1 \\ -5 \\ -3\end{array}\right), v_{2}=\left(\begin{array}{c}-2 \\ 10 \\ 6\end{array}\right), v_{3}=\left(\begin{array}{c}2 \\ -9 \\ h\end{array}\right)$. For what values of h is v_{3} in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$, and for what values of h is $\left\{v_{1}, v_{2}, v_{3}\right\}$ linearly dependent?
2. Mark each statement True or False.
(a) The columns of a matrix A are linearly independent if the equation $A x=0$ has the trivial solution.
(b) If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S.
(c) The columns of any 4×5 matrix are linearly dependent.
(d) If x and y are linearly independent, and if $\{x, y, z\}$ is linearly dependent, then z is in $\operatorname{Span}\{x, y\}$.
(e) Two vectors are linearly dependent if and only if they lie on a line through the origin.
(f) If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.
(g) If x and y are linearly independent, and if z is in $\operatorname{Span}\{x, y\}$, then $\{x, y, z\}$ is linearly dependent.
(h) If a set in \mathbb{R}^{n} is linearly dependent, then the set contains more vectors than there are entries in each vector.
3. For the given cases below, (i) does the equation $A \mathbf{x}=\mathbf{0}$ have a nontrivial solution and (ii) does the equation $A \mathbf{x}=\mathbf{b}$ have at least one solution for every possible \mathbf{b} ?
(a) A is a 3×3 matrix with three pivot positions.
(b) A is a 3×3 matrix with two pivot positions.
(c) A is a 3×2 matrix with two pivot positions.
(d) A is a 2×4 matrix with two pivot positions.
4. For the statements below, mark either True or False. If True, give a justification. If False, provide a counterexample.
(a) If v_{1}, \ldots, v_{4} are in \mathbb{R}^{4} and $v_{3}=0$, then $\left\{v_{1}, \ldots, v_{4}\right\}$ is linearly dependent.
(b) If v_{1} and v_{2} are in \mathbb{R}^{4} and v_{2} is not a scalar multiple of v_{1}, then $\left\{v_{1}, v_{2}\right\}$ is linearly independent.
(c) If v_{1}, \ldots, v_{4} are linearly independent vectors in \mathbb{R}^{4}, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is also linearly independent.

3 Possibly Harder Problems

5. Suppose A is a 3×3 matrix and b is a vector in \mathbb{R}^{3} with the property that $A x=b$ has a unique solution. Explain why the columns of A must span \mathbb{R}^{3}.
6. Suppose $A \mathbf{x}=\mathbf{b}$ has a solution. Prove that the solution is unique if and only if the matrix equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. (recall that the "trivial solution" is the solution $\mathbf{x}=0$.)
7. Construct a 2×2 matrix A such that the solution set of the equation $A \mathbf{x}=\mathbf{0}$ is the line in \mathbb{R}^{2} through $(4,1)$ and the origin. Then, find a vector \mathbf{b} in \mathbb{R}^{2} such that the solution set of $A \mathbf{x}=\mathbf{b}$ is not a line in \mathbb{R}^{2} parallel to the solution set of $A \mathbf{x}=\mathbf{0}$.
