Math 54 Section Worksheet 2 Solutions

GSI: Jeremy Meza
Office Hours: Monday 3:30-5:30pm, Evans 1047
Friday, January 31, 2020

1 Warm-Up

- Turn to someone next to you and define to them what a linear combination is. What type of object is it? How do you correctly use the term in a sentence?
- Now have the other person define to you what span is. What type of object is it? How do you correctly use the term in a sentence?
- Multiply the following:

$$
\left(\begin{array}{cccc}
1 & -2 & 0 & 4 \\
0 & 0 & 1 & 3 \\
10 & 1 & 0 & -2
\end{array}\right)\left(\begin{array}{c}
2 \\
3 \\
0 \\
-5
\end{array}\right)
$$

2 Together

Let $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right), v_{2}=\left(\begin{array}{l}3 \\ 5 \\ 1\end{array}\right), v_{3}=\left(\begin{array}{l}2 \\ 4 \\ 1\end{array}\right)$, and $b=\left(\begin{array}{l}4 \\ 3 \\ 7\end{array}\right)$. Let's determine if \mathbf{b} is in the span of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Now, let's solve the system:

$$
\begin{array}{r}
x_{1}+3 x_{2}+2 x_{3}=4 \\
5 x_{2}+4 x_{3}=3 \\
2 x_{1}+x_{2}+1 x_{3}=7
\end{array}
$$

Notice any similarities?

3 Problems

1. Mark each statement True or False.
(a) The weights c_{1}, \ldots, c_{p} in a linear combination $c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{p} \mathbf{v}_{\mathbf{p}}$ cannot all be zero. \mathbf{F}
(b) When \mathbf{u} and \mathbf{v} are nonzero vectors, $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ contains the line through \mathbf{u} and the origin. \mathbf{T}
(c) Asking whether the linear system corresponding to an augmented matrix $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{b}\end{array}\right]$ has a solution amounts to asking whether \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$. \mathbf{T}
(d) If $m \neq n$, the columns of an $m \times n$ matrix A can span \mathbb{R}^{n}. F
(e) If the columns of an $m \times n$ matrix A span \mathbb{R}^{m}, then the equation $A x=b$ has a solution for all $b \in \mathbb{R}^{m} . \mathbf{T}$
(f) If the equation $A x=b$ has a solution for all $b \in \mathbb{R}^{m}$, then the columns of an $m \times n$ matrix span \mathbb{R}^{m}. \mathbf{T}
2. Let A be a 3×2 matrix. Explain why the equation $A x=b$ cannot be consistent for all b in \mathbb{R}^{3}. Generalize your argument to the case of an arbitrary A with more rows than columns.
3. Describe the solutions of the following system in parametric vector form. Give a geometric description of the solution set.

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{3} & =1 \\
-4 x_{1}-9 x_{2}+2 x_{3} & =-1 \\
-3 x_{2}-6 x_{3} & =-3
\end{aligned}
$$

4. Let $v_{1}=\left(\begin{array}{c}1 \\ -5 \\ -3\end{array}\right), v_{2}=\left(\begin{array}{c}-2 \\ 10 \\ 6\end{array}\right), v_{3}=\left(\begin{array}{c}2 \\ -9 \\ h\end{array}\right)$. For what values of h is v_{3} in $\operatorname{Span}\left\{v_{1}, v_{2}\right\} ?$

4 Possibly Harder Problems

5. Suppose A is a 3×3 matrix and b is a vector in \mathbb{R}^{3} with the property that $A x=b$ has a unique solution. Explain why the columns of A must span \mathbb{R}^{3}.
6. Suppose $A \mathbf{x}=\mathbf{b}$ has a solution. Prove that the solution is unique if and only if the matrix equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. (recall that the "trivial solution" is the solution $\mathbf{x}=0$.)
7. Construct a 2×2 matrix A such that the solution set of the equation $A \mathbf{x}=\mathbf{0}$ is the line in \mathbb{R}^{2} through $(4,1)$ and the origin. Then, find a vector \mathbf{b} in \mathbb{R}^{2} such that the solution set of $A \mathbf{x}=\mathbf{b}$ is not a line in \mathbb{R}^{2} parallel to the solution set of $A \mathbf{x}=\mathbf{0}$.
