Math 54 Section Worksheet 2

GSI: Jeremy Meza Office Hours: Monday 3:30-5:30pm, Evans 1047 Friday, January 31, 2020

1 Warm-Up

- Turn to someone next to you and define to them what a *linear combination* is. What type of object is it? How do you correctly use the term in a sentence?
- Now have the other person define to you what *span* is. What type of object is it? How do you correctly use the term in a sentence?
- Multiply the following:

$$\begin{pmatrix} 1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 3 \\ 10 & 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 0 \\ -5 \end{pmatrix}$$

2 Together

Let
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$, and $b = \begin{pmatrix} 4 \\ 3 \\ 7 \end{pmatrix}$. Let's determine if **b** is in the span of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Now, let's solve the system:

$$x_1 + 3x_2 + 2x_3 = 4$$

 $5x_2 + 4x_3 = 3$
 $2x_1 + x_2 + 1x_3 = 7$

Notice any similarities?

3 Problems

- 1. Mark each statement True or False.
 - (a) The weights c_1, \ldots, c_p in a linear combination $c_1 \mathbf{v_1} + \cdots + c_p \mathbf{v_p}$ cannot all be zero.
 - (b) When ${\bf u}$ and ${\bf v}$ are nonzero vectors, ${\rm Span}\{{\bf u},{\bf v}\}$ contains the line through ${\bf u}$ and the origin.
 - (c) Asking whether the linear system corresponding to an augmented matrix $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{b} \end{bmatrix}$ has a solution amounts to asking whether \mathbf{b} is in $\operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$.
 - (d) If $m \neq n$, the columns of an $m \times n$ matrix A can span \mathbb{R}^n .
 - (e) If the columns of an $m \times n$ matrix A span \mathbb{R}^m , then the equation Ax = b has a solution for all $b \in \mathbb{R}^m$.
 - (f) If the equation Ax = b has a solution for all $b \in \mathbb{R}^m$, then the columns of an $m \times n$ matrix span \mathbb{R}^m .
- 2. Let A be a 3×2 matrix. Explain why the equation Ax = b cannot be consistent for all b in \mathbb{R}^3 . Generalize your argument to the case of an arbitrary A with more rows than columns.
- 3. Describe the solutions of the following system in parametric vector form. Give a geometric description of the solution set.

$$x_1 + 3x_2 + x_3 = 1$$
$$-4x_1 - 9x_2 + 2x_3 = -1$$
$$-3x_2 - 6x_3 = -3$$

4. Let
$$v_1 = \begin{pmatrix} 1 \\ -5 \\ -3 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -2 \\ 10 \\ 6 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ -9 \\ h \end{pmatrix}$. For what values of h is v_3 in Span $\{v_1, v_2\}$?

4 Possibly Harder Problems

- 5. Suppose A is a 3×3 matrix and b is a vector in \mathbb{R}^3 with the property that Ax = b has a unique solution. Explain why the columns of A must span \mathbb{R}^3 .
- 6. Suppose $A\mathbf{x} = \mathbf{b}$ has a solution. Prove that the solution is unique if and only if the matrix equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. (recall that the "trivial solution" is the solution $\mathbf{x} = 0$.)
- 7. Construct a 2×2 matrix A such that the solution set of the equation $A\mathbf{x} = \mathbf{0}$ is the line in \mathbb{R}^2 through (4,1) and the origin. Then, find a vector \mathbf{b} in \mathbb{R}^2 such that the solution set of $A\mathbf{x} = \mathbf{b}$ is not a line in \mathbb{R}^2 parallel to the solution set of $A\mathbf{x} = \mathbf{0}$.