Math 54 Section Worksheet 17 GSI: Jeremy Meza Office Hours: Mon 3:30-5:30pm, Zoom ID: 7621822286 Friday April 17, 2020

1 Warm-Up

- 1. Write down an example of a second-order, homogenous, linear, constant *coefficient* differential equation. Private chat with someone and explain to them what all the terms above mean.
- 2. Solve the differential equation

$$y' + ky = 0$$

with initial value y(0) = 5.

2 Virtually Together

We want to solve the differential equation

$$ay'' + by' + cy = 0 (1)$$

Before we actually solve this, let's abstract the problem to see if we can connect it to linear algebra.

Let's consider the vector space $V = \{ \text{smooth functions } f : \mathbb{R} \to \mathbb{R} \}$. Define a transformation $D: V \to V$ by D(f) = af'' + bf' + cf. **Problem:** Show that D is a linear transformation.

Finding solutions y(t) to (1) is equivalent to finding elements of...

(c) V (d) Nul $(D)^{\perp}$. (Circle one) (a) $\ker(D)$ (b) $\operatorname{Im}(D)$

This means that if we want to describe all the solutions to (1), we want to find a basis for a null space!

Fact: Because (1) is 2nd-order, the space of solutions will be a 2-dimensional subspace inside V.

Thus, our null space is 2-dimensional, and so we just need to find 2 linearly independent solutions and any other solution will simply be some linear combination of them. So, how do we find just 2 linearly independent solutions to a differential equation? We guess, and then we check.

Example 2.1. Let's solve the equation y'' - 5y' + 6y = 0. **Guess:** $y(t) = e^{rt}$.

Check: Plugging in, we get $r^2e^{rt} - 5re^{rt} + 6e^{rt} = 0$ and hence

$$r^{2} - 5r + 6 = 0 \implies (r - 3)(r - 2) = 0 \implies r = 3, 2$$

We claim that 2 linearly independent solutions are $y_1(t) = e^{3t}$ and $y_2(t) = e^{2t}$.

If the *characteristic equation* in the above example turned out to have a double root or complex roots, then we amend our 2 linearly independent solutions:

	Two linearly independent solutions
2 distinct real	$y_1(t) = e^{r_1 t}, y_2(t) = e^{r_2 t}$
roots r_1, r_2	
1 double root	$y_1(t) = e^{rt}, y_2(t) = te^{rt}$
$r_1 = r_2 = r$	
2 complex roots	$y_1(t) = e^{r_1 t}, y_2(t) = e^{r_2 t} \text{OR}$
$r_1 = \alpha + \beta i$	$y_1(t) = e^{\alpha t} \cos(\beta t), y_2(t) = e^{\alpha t} \sin(\beta t)$
$r_2 = \alpha - \beta i$	

Now, what exactly does it mean for solutions to be linearly independent? We will talk about this more another time, but for now...

3 Problems

- 1. Find a general solution to the given differential equation.
 - (a) y'' y' 11y = 0
 - (b) 4y'' 4y' + y = 0
 - (c) z'' 6z' + 10z = 0
- 2. Find a particular solution to the given initial value problem.
 - (a) y'' 4y' 5y = 0; y(-1) = 3, y'(-1) = 9
 - (b) y'' + 2y' + y = 0; y(0) = 1, y'(0) = -3
 - (c) w'' 2w' + 4w = 0; w(0) = 0, w'(0) = 1

4 Challenge

- 3. Let y_1, y_2 be two solutions to y'' + py' + qy = 0. Define the Wronskian $W[y_1, y_2]$ to be the determinant of the matrix $\begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix}$.
 - (a) Show that $W[y_1, y_2]$ satisfies the differential equation W' + pW = 0.
 - (b) Solve the separable equation in part (a).
 - (c) Conclude that the Wronskian is either identically 0 or never 0.