Math 54 Section Worksheet 17

GSI: Jeremy Meza
Office Hours: Mon 3:30-5:30pm, Zoom ID: 7621822286
Friday April 17, 2020

1 Warm-Up

1. Write down an example of a second-order, homogenous, linear, constant coefficient differential equation. Private chat with someone and explain to them what all the terms above mean.
2. Solve the differential equation

$$
y^{\prime}+k y=0
$$

with initial value $y(0)=5$.

2 Virtually Together

We want to solve the differential equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

Before we actually solve this, let's abstract the problem to see if we can connect it to linear algebra.

Let's consider the vector space $V=\{$ smooth functions $f: \mathbb{R} \rightarrow \mathbb{R}\}$. Define a transformation $D: V \rightarrow V$ by $D(f)=a f^{\prime \prime}+b f^{\prime}+c f$.
Problem: Show that D is a linear transformation.

Finding solutions $y(t)$ to (1) is equivalent to finding elements of...
(Circle one)
(a) $\operatorname{ker}(D)$
(b) $\operatorname{Im}(D)$
(c) V
(d) $\operatorname{Nul}(D)^{\perp}$.

This means that if we want to describe all the solutions to (1), we want to find a basis for a null space!
Fact: Because (1) is 2nd-order, the space of solutions will be a 2-dimensional subspace inside V.

Thus, our null space is 2 -dimensional, and so we just need to find 2 linearly independent solutions and any other solution will simply be some linear combination of them. So, how do we find just 2 linearly independent solutions to a differential equation? We guess, and then we check.

Example 2.1. Let's solve the equation $y^{\prime \prime}-5 y^{\prime}+6 y=0$.
Guess: $y(t)=e^{r t}$.
Check: Plugging in, we get $r^{2} e^{r t}-5 r e^{r t}+6 e^{r t}=0$ and hence

$$
r^{2}-5 r+6=0 \Longrightarrow(r-3)(r-2)=0 \Longrightarrow r=3,2
$$

We claim that 2 linearly independent solutions are $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{2 t}$.
If the characteristic equation in the above example turned out to have a double root or complex roots, then we amend our 2 linearly independent solutions:

	Two linearly independent solutions
2 distinct real roots r_{1}, r_{2}	$y_{1}(t)=e^{r_{1} t}, \quad y_{2}(t)=e^{r_{2} t}$
1 double root	$y_{1}(t)=e^{r t}, \quad y_{2}(t)=t e^{r t}$
$r_{1}=r_{2}=r$	
2 complex roots	$y_{1}(t)=e^{r_{1} t}, \quad y_{2}(t)=e^{r_{2} t \quad \text { OR }}$
$r_{1}=\alpha+\beta i$	$y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)$
$r_{2}=\alpha-\beta i$	

Now, what exactly does it mean for solutions to be linearly independent? We will talk about this more another time, but for now...

3 Problems

1. Find a general solution to the given differential equation.
(a) $y^{\prime \prime}-y^{\prime}-11 y=0$
(b) $4 y^{\prime \prime}-4 y^{\prime}+y=0$
(c) $z^{\prime \prime}-6 z^{\prime}+10 z=0$
2. Find a particular solution to the given initial value problem.
(a) $y^{\prime \prime}-4 y^{\prime}-5 y=0 ; y(-1)=3, y^{\prime}(-1)=9$
(b) $y^{\prime \prime}+2 y^{\prime}+y=0 ; y(0)=1, y^{\prime}(0)=-3$
(c) $w^{\prime \prime}-2 w^{\prime}+4 w=0 ; w(0)=0, w^{\prime}(0)=1$

4 Challenge

3. Let y_{1}, y_{2} be two solutions to $y^{\prime \prime}+p y^{\prime}+q y=0$. Define the Wronskian $W\left[y_{1}, y_{2}\right]$ to be the determinant of the matrix $\left(\begin{array}{ll}y_{1}(t) & y_{2}(t) \\ y_{1}^{\prime}(t) & y_{2}^{\prime}(t)\end{array}\right)$.
(a) Show that $W\left[y_{1}, y_{2}\right]$ satisfies the differential equation $W^{\prime}+p W=0$.
(b) Solve the separable equation in part (a).
(c) Conclude that the Wronskian is either identically 0 or never 0 .
