Math 54 Section Worksheet 16 GSI: Jeremy Meza Office Hours: Mon 3:30-5:30pm, Zoom ID: 7621822286 Monday April 6, 2020

1 Virtually Together

Let's first recall the definition of an orthogonal matrix:

Definition 1.1. Let U be an $n \times n$ matrix. Then, U is orthogonal iff $U^T U = I$.

Note that since U is square, we also have that $UU^T = I$. Unwrapping this definition, we can see that the columns of U are ______. Now, what's so important about these matrices? A good start is listing some properties they satisfy:

Proposition 1.1. Let U be an $n \times n$ orthogonal matrix and $x, y \in \mathbb{R}^n$. Then,

- 1. ||Ux|| =
- 2. $Ux \cdot Uy =$

What this says is that, viewed as a linear transformation, U doesn't change the lengths of vectors or angles between any 2 vectors. Do you have a picture in your mind? It might look something like the following:

In fact, geometrically, *every* orthogonal matrix is just some rotation or reflection! (See the challenge problems). In general, suppose U is an $m \times n$ matrix with orthonormal columns. Note that if $m \neq n$, then U is NOT an orthogonal matrix, because by definition an orthogonal matrix must be square. Let $\mathbf{u}_1, \ldots, \mathbf{u}_n$ denote the columns of U and let $\mathbf{x} \in \mathbb{R}^n$, then

 $U^T U \mathbf{x} =$ _____ $UU^T \mathbf{x} =$ _____

For this reason, we call UU^T a *projection matrix*, since it maps vectors \mathbf{x} to $\operatorname{proj}_{\operatorname{Col} U} \mathbf{x}^{1}$. Switching topics, let's explain the following equalities:

$\dim \operatorname{Col} A + \dim \operatorname{Nul} A = n$	because
$\dim \operatorname{Row} A + \dim \operatorname{Nul} A = n$	because
$\dim \operatorname{Row} A + \dim \operatorname{Nul} A^T = m$	because
$\dim\operatorname{Col} A + \dim\operatorname{Nul} A^T = m$	because

Thus,

 $\dim \operatorname{Col} A = \dim \operatorname{Row} A$

¹In general, a projection matrix P need not be an orthogonal projection. Instead, it only needs to satisfy $P^2 = P$. If P is also an orthogonal projection, then the further condition $P^2 = P = P^T$ holds.

2 Problems

- 1. Let $A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}$. What spaces do Col A, Row A, Nul A, Nul A^T lie in? Find bases for each one, and then try to draw a picture of \mathbb{R}^2 and \mathbb{R}^3 with each drawn in.
- 2. Let $P = UU^T$, where U has orthonormal columns.
 - (a) Show that $P^2 = P$.
 - (b) Show that P only has eigenvalues 0, 1.
 - (c) What linear transformation does P correspond to geometrically? Can you think of eigenvectors of P with eigenvalues 0, 1?
- 3. True or False?
 - (a) A matrix with orthonormal columns is an orthogonal matrix.
 - (b) If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $\mathbf{x} \mapsto A\mathbf{x}$ preserves lengths.
 - (c) An orthogonal matrix is invertible.
 - (d) If x, y are orthogonal vectors in \mathbb{R}^n and U is an orthogonal matrix, then $(Ux) \cdot y = 0$.
 - (e) If the columns of an $n \times p$ matrix U are orthonormal, then $UU^T \mathbf{y}$ is the orthogonal projection of \mathbf{y} onto the column space of U.
 - (f) If an $n \times p$ matrix U has orthonormal columns, then $UU^T x = x$ for all x in \mathbb{R}^n .
 - (g) If $P = UU^T$ where U has orthonormal columns, then P is invertible.

3 Challenge

- 4. Let A be a real orthogonal $n \times n$ matrix. Prove that every eigenvalue of A is either 1 or -1, and also that det $A = \pm 1$. (Hint: for the former, look at $Av \cdot v$ for a chosen v; for the latter, look at the characteristic polynomial).
- 5. Let A be a 2×2 orthogonal matrix. Prove that the linear transformation $x \mapsto Ax$ is either a rotation about the origin or a reflection about a line through the origin. (Hints: Write out an arbitrary 2×2 matrix and find some equations the entries must satisfy owing to orthogonality and the problem above. Then, see what A does to e_1 and e_2).
- 6. Let A be a real orthogonal $n \times n$ matrix. Prove that if n is odd, then A has at least one real eigenvalue. (Hint: look at the characteristic polynomial and use some property of continuous functions).
- 7. Let A be a 3×3 orthogonal matrix.
 - (a) Use some problems above to deduce that A has a real eigenvector with eigenvalue either 1 or -1.
 - (b) Suppose there is some vector v such that Av = v. Make a guess as to what the linear transformation $x \mapsto Ax$ can be, geometrically, as in the problem above. (What does the vector v represent?)
 - (c) Suppose there is a vector v such that Av = -v. Make a guess as to what the linear transformation $x \mapsto Ax$ can be, geometrically, as in the problem above.