Math 54 Section Worksheet 16

GSI: Jeremy Meza
Office Hours: Mon 3:30-5:30pm, Zoom ID: 7621822286
Monday April 6, 2020

1 Virtually Together

Let's first recall the definition of an orthogonal matrix:
Definition 1.1. Let U be an $n \times n$ matrix. Then, U is orthogonal iff $U^{T} U=I$.
Note that since U is square, we also have that $U U^{T}=I$. Unwrapping this definition, we can see that the columns of U are \qquad . Now, what's so important about these matrices? A good start is listing some properties they satisfy:

Proposition 1.1. Let U be an $n \times n$ orthogonal matrix and $x, y \in \mathbb{R}^{n}$. Then,

1. $\|U x\|=$
2. $U x \cdot U y=$

What this says is that, viewed as a linear transformation, U doesn't change the lengths of vectors or angles between any 2 vectors. Do you have a picture in your mind? It might look something like the following:

In fact, geometrically, every orthogonal matrix is just some rotation or reflection! (See the challenge problems). In general, suppose U is an $m \times n$ matrix with orthonormal columns. Note that if $m \neq n$, then U is NOT an orthogonal matrix, because by definition an orthogonal matrix must be square. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ denote the columns of U and let $\mathbf{x} \in \mathbb{R}^{n}$, then

$$
\begin{aligned}
& U^{T} U \mathbf{x}= \\
& U U^{T} \mathbf{x}= \\
&
\end{aligned}
$$

For this reason, we call $U U^{T}$ a projection matrix, since it maps vectors \mathbf{x} to $\operatorname{proj}_{\mathrm{Col} U} \mathbf{x .}^{1}$
Switching topics, let's explain the following equalities:

$$
\begin{aligned}
\operatorname{dim} \operatorname{Col} A+\operatorname{dim} \operatorname{Nul} A=n & \text { because } \\
\operatorname{dim} \operatorname{Row} A+\operatorname{dim} \operatorname{Nul} A=n & \text { because } \\
\operatorname{dim} \operatorname{Row} A+\operatorname{dimNul} A^{T}=m & \text { because } \\
\operatorname{dim} \operatorname{Col} A+\operatorname{dim} \operatorname{Nul} A^{T}=m & \text { because }
\end{aligned}
$$

Thus,

$$
\operatorname{dim} \operatorname{Col} A=\operatorname{dim} \operatorname{Row} A
$$

[^0]
2 Problems

1. Let $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 2 \\ 1 & 2\end{array}\right)$. What spaces do $\operatorname{Col} A$, $\operatorname{Row} A, \operatorname{Nul} A, \operatorname{Nul} A^{T}$ lie in? Find bases for each one, and then try to draw a picture of \mathbb{R}^{2} and \mathbb{R}^{3} with each drawn in.
2. Let $P=U U^{T}$, where U has orthonormal columns.
(a) Show that $P^{2}=P$.
(b) Show that P only has eigenvalues 0,1 .
(c) What linear transformation does P correspond to geometrically? Can you think of eigenvectors of P with eigenvalues 0,1 ?
3. True or False?
(a) A matrix with orthonormal columns is an orthogonal matrix.
(b) If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $\mathbf{x} \mapsto A \mathbf{x}$ preserves lengths.
(c) An orthogonal matrix is invertible.
(d) If x, y are orthogonal vectors in \mathbb{R}^{n} and U is an orthogonal matrix, then $(U x) \cdot y=0$.
(e) If the columns of an $n \times p$ matrix U are orthonormal, then $U U^{T} \mathbf{y}$ is the orthogonal projection of \mathbf{y} onto the column space of U.
(f) If an $n \times p$ matrix U has orthonormal columns, then $U U^{T} x=x$ for all x in \mathbb{R}^{n}.
(g) If $P=U U^{T}$ where U has orthonormal columns, then P is invertible.

3 Challenge

4. Let A be a real orthogonal $n \times n$ matrix. Prove that every eigenvalue of A is either 1 or -1 , and also that $\operatorname{det} A= \pm 1$. (Hint: for the former, look at $A v \cdot v$ for a chosen v; for the latter, look at the characteristic polynomial).
5. Let A be a 2×2 orthogonal matrix. Prove that the linear transformation $x \mapsto A x$ is either a rotation about the origin or a reflection about a line through the origin. (Hints: Write out an arbitrary 2×2 matrix and find some equations the entries must satisfy owing to orthogonality and the problem above. Then, see what A does to e_{1} and e_{2}).
6. Let A be a real orthogonal $n \times n$ matrix. Prove that if n is odd, then A has at least one real eigenvalue. (Hint: look at the characteristic polynomial and use some property of continuous functions).
7. Let A be a 3×3 orthogonal matrix.
(a) Use some problems above to deduce that A has a real eigenvector with eigenvalue either 1 or -1 .
(b) Suppose there is some vector v such that $A v=v$. Make a guess as to what the linear transformation $x \mapsto A x$ can be, geometrically, as in the problem above. (What does the vector v represent?)
(c) Suppose there is a vector v such that $A v=-v$. Make a guess as to what the linear transformation $x \mapsto A x$ can be, geometrically, as in the problem above.

[^0]: ${ }^{1}$ In general, a projection matrix P need not be an orthogonal projection. Instead, it only needs to satisfy $P^{2}=P$. If P is also an orthogonal projection, then the further condition $P^{2}=P=P^{T}$ holds.

